### Introduction

**Direct proportions**: Two Quantities are said to be in direct proportion if whenever the value of one increases or decreases then the value of other increases or decreases in such a way that ratio between them remains constant.

If two quantities are x and y then x/y remains constant

That is,  $x1/y1 = x2/y2 = x3/y3 \dots = k$ 

where k is a constant



Direct variation or proportion

Examples

Example 1 – Observe the tables given below and find whether x and y are directly proportional:

**(a)** 

| X | 3 | 5  | 7  | 9  | 12 |
|---|---|----|----|----|----|
| У | 6 | 10 | 14 | 18 | 24 |

Solution - Since  $\frac{x}{y} = \frac{3}{6} = \frac{5}{10} = \frac{7}{14} = \frac{9}{18} = \frac{12}{24} = \frac{1}{2} = a \text{ constant}$ 

Thus, x and y are directly proportional.

**(b)** 

| X | 4  | 7  | 12 | 15 |
|---|----|----|----|----|
| У | 12 | 21 | 36 | 60 |

Solution - Since  $\frac{x}{y} = \frac{4}{12} = \frac{7}{21} = \frac{12}{36} \neq \frac{15}{60}$ 

Thus, x and y are not directly proportional

Example 2 – If x and y are directly proportional, find the values of x1, x2 and y1 in the table given below.

| X | 3  | x1 | x2 | 10 |
|---|----|----|----|----|
| У | 36 | 60 | 96 | y1 |

Solution - It is given that x and y are proportional to each other

Thus,  $\frac{3}{36} = \frac{x1}{60} = \frac{x2}{96} = \frac{10}{y1}$ Now,  $\frac{3}{36} = \frac{x1}{60} = \frac{1}{12} = \frac{x1}{60} = x1 = \frac{60}{12} = 5$   $\frac{3}{36} = \frac{x2}{96} = \frac{1}{12} = \frac{x2}{96} = x2 = \frac{96}{12} = 8$  $\frac{3}{36} = \frac{10}{y1} = \frac{1}{12} = \frac{10}{y1} = y1 = 120$ 

Therefore, x1 = 5, x2 = 8 and y1 = 120

# Example 3 – A car covers 432 km in 36 litres of petrol. How much distance would it cover in 25 litres of petrol?

Solution - Let distance covered in 25 liters of petrol be x km

According to given question, we can represent data in terms of table as follows:

| Quantity of petrol (in liters) | 36  | 25 |
|--------------------------------|-----|----|
| Distance (in km)               | 432 | Х  |

Since, less is the quantity of petrol, less is the distance covered so this is a case of direct proportion.

Thus,  $\frac{36}{432} = \frac{25}{x} = > \frac{1}{12} = \frac{25}{x} = > x = 12 \times 25 = 300$ 

Therefore, distance covered in 25 l of petrol = 300 km

### Example 4 – If 50 meters of a cloth costs Rs 3725, how much cloth can be purchased for Rs 1788?

Solution - Let required length of cloth be x m

| Length of cloth (in meters) | 50   | Х    |
|-----------------------------|------|------|
| Cost (in Rs)                | 3725 | 1788 |

Since less is the length of cloth, less is the cost so this is a case of direct proportion.

Thus,  $\frac{50}{3725} = \frac{x}{1788} = > \frac{2}{149} = \frac{x}{1788} = > x = \frac{1788 \times 2}{149} = 24$ 

Therefore, required length of cloth = 24 m

# Example 5 – If the weight of 9 sheets of thick paper is 30 grams, how many sheets of the same paper would weigh $1\frac{1}{4}$ kilograms?

Solution - Let the required number of sheets be x

We will first convert  $1\frac{1}{4}$  kg into grams

$$1\frac{1}{4} = \frac{5}{4}kg = \frac{5}{4}(1000) = 1250g$$

According to given question, we can represent data in terms of table as follows:

| Number of sheets            | 9  | x    |
|-----------------------------|----|------|
| Weight of sheets (in grams) | 30 | 1250 |

Since more the number of sheets, more is the weight so this is a case of direct proportion.

Thus, 
$$\frac{9}{30} = \frac{x}{1250} \Longrightarrow \frac{3}{10} = \frac{x}{1250} \Longrightarrow x = \frac{1250 \times 3}{10} = 375$$

Therefore, required number of sheets = 375

Example 6 – A train is moving at a uniform speed of 75 km/hr.

(a) How far will it travel in 24 minutes?

#### (b) In how much time will it cover 175 km?

Solution - Let the distance travelled in 24 minutes be x km

And, let the time taken to cover 175 km be y minutes

Given that uniform speed = 75 km/h

Then, distance = 75 km and time = 60 minutes

According to given question, we can represent data in terms of table as follows:

| Distance covered (in km) | 75 | Х  | 175 |
|--------------------------|----|----|-----|
| Time (in minutes)        | 60 | 24 | У   |

Since more the distance, more will be the time taken so this is a case of direct proportion

Thus,  $\frac{75}{60} = \frac{x}{24} = \frac{175}{y}$ =>  $\frac{5}{4} = \frac{x}{24} => x = 30$ 

And,  $\frac{5}{4} = \frac{175}{y} = > y = 140$ 

Therefore, required distance = 30 km and required time = 140 minutes

Example 7 – A vertical pole 5 m 60 cm high casts a shadow 3 m 20 cm long. Find at the same time (a) the length of shadow cast by another pole 10 m 50 cm high, (b) the height of a pole which casts a shadow 5 m long.

Solution - Let required length of shadow be x cm and height of pole be y cm

According to given question, we can represent data in terms of table as follows:

| Height of pole (in cm)       | 560 | 1050 | У   |
|------------------------------|-----|------|-----|
| Length of its shadow (in cm) | 320 | x    | 500 |

Since, more the height of pole, more will be the length of its shadow so this is a case of direct proportion

Thus,  $\frac{560}{320} = \frac{1050}{x} = \frac{y}{500}$ => $\frac{7}{4} = \frac{1050}{x} => x = 600$ And,  $\frac{7}{4} = \frac{y}{500} => y = 875$ 

Therefore, required length of shadow = 600cm = 6 m and required height of pole = 875 cm = 8 m 75 cm

Example 8 – The scale of a map is  $1:3 \times 10^7$ . Two cities are 5 cm apart on the map. Find the actual distance between them in kilometers.

Solution - Let the required distance be x cm

According to given question, we can represent data in terms of table as follows:

| Distance on the map (in cm) | 1                 | 5 |
|-----------------------------|-------------------|---|
| Actual distance (in cm)     | $3 \times 10^{7}$ | Х |

Since, more is the distance on the map; more will be the actual distance so this is a case of direct proportion.

Thus,  $\frac{1}{3 \times 10^7} = \frac{5}{x} = x = 3 \times 10^7 \times 5 = 15 \times 10^7$ 

Thus, actual distance between them =  $15 \times 10^7$  cm

 $=\frac{15\times10^7}{10^2\times10^3}=1500km$ 

Example 9 – If 5 men or 7 women can earn Rs 875 per day, how much would 10 men and 5 women earn per day?

Solution - It is given that 5 men or 7 women can earn Rs 875

 $\Rightarrow 5 \text{ men} = 7 \text{ women}$ 

=> 1 man = 7/5 women

Thus, 10 men and 5 women = 10(7/5) + 5 = 14 + 5 = 19 women

Let 10 men and 5 women would earn Rs x per day

Now, we can represent data in terms of table as follows:

| Number of women  | 7   | 19 |
|------------------|-----|----|
| Earnings per day | 875 | Х  |

Thus,  $\frac{7}{875} = \frac{19}{x} => 7x = 16625 => x = 2375$ 

Therefore, 10 men and 5 women would earn Rs 2375 per day

#### Exercise 12 A

Question 1 – Observe the tables given below and in each one find whether x and y are proportional:

**(a)** 

| X | 3 | 5  | 8  | 11 | 26 |
|---|---|----|----|----|----|
| У | 9 | 15 | 24 | 33 | 78 |

Solution - Since  $\frac{x}{y} = \frac{3}{9} = \frac{5}{15} = \frac{8}{24} = \frac{11}{33} = \frac{26}{78} = \frac{1}{3} = a$  constant

Thus, x and y are directly proportional.

#### **(b)**

| X | 2.5 | 4  | 7.5 | 10 | 14 |
|---|-----|----|-----|----|----|
| у | 10  | 16 | 30  | 40 | 42 |

Solution - Since  $\frac{x}{y} = \frac{2.5}{10} = \frac{4}{16} = \frac{7.5}{30} = \frac{10}{40} \neq \frac{14}{42}$ 

Thus, x and y are not directly proportional.

(c)

| X | 5  | 7  | 9  | 15 | 18 | 25 |
|---|----|----|----|----|----|----|
| у | 15 | 21 | 27 | 60 | 72 | 75 |

Solution – Since  $\frac{5}{15} = \frac{7}{21} = \frac{9}{27} = \frac{25}{75} = \frac{1}{3} = a \text{ constant}$ 

And,  $\frac{15}{60} = \frac{18}{72} = \frac{1}{4} = a \ constant$ 

But,  $\frac{1}{3} \neq \frac{1}{4}$ 

Thus, x and y are not directly proportional.

# Question 2 -If x and y are directly proportional, find the values of x1, x2 and y1 in the table given below:

| X | 3  | x1  | x2  | 10 |
|---|----|-----|-----|----|
| У | 72 | 120 | 192 | y1 |

Solution - It is given that x and y are proportional to each other

Thus,  $\frac{3}{72} = \frac{x1}{120} = \frac{x2}{192} = \frac{10}{y1}$ Now,  $\frac{3}{72} = \frac{x1}{120} = \frac{1}{24} = \frac{x1}{120} = x1 = \frac{120}{24} = 5$   $\frac{3}{72} = \frac{x2}{192} = \frac{1}{24} = \frac{x2}{192} = x2 = \frac{192}{24} = 8$  $\frac{3}{72} = \frac{10}{y1} = \frac{1}{24} = \frac{10}{y1} = y1 = 240$ 

Therefore, x1 = 5, x2 = 8 and y1 = 240

### Question 3 – A truck covers a distance of 510 km in 34 litres of diesel. How much distance would it cover in 20 litres of diesel?

Solution - Let distance covered in 20 liters of diesel be x km

According to given question, we can represent data in terms of table as follows:

| Quantity of diesel (in liters) | 34  | 20 |
|--------------------------------|-----|----|
| Distance (in km)               | 510 | x  |

Since, less is the quantity of diesel, less is the distance covered so this is a case of direct proportion.

Thus,  $\frac{34}{510} = \frac{20}{x} = > \frac{1}{15} = \frac{20}{x} = > x = 20 \times 15 = 300$ 

Therefore, distance covered in 20 l of diesel = 300 km

### Question 4 – A taxi charges a fare of Rs 2550 for a journey of 150 km. How much would it charge for a journey of 124 km?

Solution - Let the required charges for journey of 124 km be Rs x

According to given question, we can represent data in terms of table as follows:

| Distance (in Km) | 150  | 124 |
|------------------|------|-----|
| Charges (in Rs)  | 2550 | Х   |

Since more is the distance, more is the charges so this is a case of direct proportion

Thus,  $\frac{150}{2550} = \frac{124}{x} = > \frac{1}{17} = \frac{124}{x} = > x = 124 \times 17 = 2108$ 

# Question 5 – a loaded truck covers 16 km in 25 minutes. At the same speed, how far can it travel in 5 hours?

Solution - Let the required distance be x km

According to given question, we can represent data in terms of table as follows:

| Time (in minutes) | 25 | 300 |
|-------------------|----|-----|
| Distance (in Km)  | 16 | Х   |

Since more is the distance, more is the charges so this is a case of direct proportion

Thus,  $\frac{25}{16} = \frac{300}{x} = x = \frac{300 \times 16}{25} = 192$ 

Therefore, required distance is 192 km

### Question 6 – If 18 dolls cost Rs 630, how many dolls can be bought for Rs 455?

Solution - Let the required number of dolls be x

According to given question, we can represent data in terms of table as follows:

| Cost (in Rs)    | 630 | 455 |
|-----------------|-----|-----|
| Number of dolls | 18  | x   |
|                 |     |     |

Since more is the number of dolls, more is the cost so this is a case of direct proportion

Thus, 
$$\frac{630}{18} = \frac{455}{x} = x = \frac{455 \times 18}{630} = 13$$

Therefore, required number of dolls is 13

### Question 7 – If 9 kg of sugar costs Rs 238.50, how much sugar can be bought for Rs 371?

Solution - Let required quantity of sugar be x

According to given question, we can represent data in terms of table as follows:

| Cost (in Rs)              | 238.50 | 371 |
|---------------------------|--------|-----|
| Quantity of sugar (in kg) | 9      | х   |

Since more is the quantity of sugar, more is the cost so this is a case of direct proportion

Thus,  $\frac{238.50}{9} = \frac{371}{x} = x = \frac{371 \times 9}{238.50} = 14$ 

Therefore, required quantity of sugar is 14 kg

### Question 8 – The cost of 15 meters of a cloth is Rs 981. What length of this cloth can be purchased for Rs 1308?

Solution - Let the required length of cloth be x

According to given question, we can represent data in terms of table as follows:

| Cost (in Rs)            | 981 | 1308 |
|-------------------------|-----|------|
| Length of cloth ( in m) | 15  | X    |

Since less is the length of cloth, less is the cost so this is a case of direct proportion

Thus,  $\frac{981}{15} = \frac{1308}{x} = x = \frac{1308 \times 15}{981} = 20$ 

Therefore, required length of cloth is 20 m

Question 9 – In a model of a ship, the mast is 9 cm high, while the mast of the actual ship is 15 m high. If the length of the ship is 35 meters, how long is the model ship?

Solution - Let the required length of model ship be Rs x

According to given question, we can represent data in terms of table as follows:

| Length of ship (in cm)        | 1500 | 3500 |
|-------------------------------|------|------|
| Length of modal ship ( in cm) | 9    | Х    |

Since more is the length of ship, more is the length of modal ship so this is a case of direct proportion

Thus,  $\frac{1500}{9} = \frac{3500}{x} = x = \frac{3500 \times 9}{1500} = 21$ 

Therefore, required length of modal ship is 21 cm

### Question 10 - In 8 days, the earth picks up $(6.4 \times 10^7)$ kg of dust from the atmosphere. How much dust will it pick up in 15 days?

Solution - Let the required Mass of dust be x kg

| Days         | 8                   | 15 |
|--------------|---------------------|----|
| Mass of dust | $6.4 \times 10^{7}$ | Х  |

Since more is the days, more will be the Mass of dust so this is a case of direct proportion.

Thus,  $\frac{8}{6.4 \times 10^7} = \frac{15}{x} = x = \frac{6.4 \times 10^7 \times 15}{8} = 12 \times 10^7 = 1.2 \times 10^8 kg$ 

Thus, actual distance between them =  $1.2 \times 10^8$  kg

# Question 11 – A car is travelling at the average speed of 50 km/hr. How much distance would it travel in 1 hour 12 minutes?

Solution - Let the required distance be x km/h

Given speed = 50 km/h

=> Distance = 50km and time = 1 hr.

According to given question, we can represent data in terms of table as follows:

| Time (in minutes) | 60 | 72 |
|-------------------|----|----|
| Distance (in Km)  | 50 | x  |

Since more is the distance, more is the time so this is a case of direct proportion

Thus,  $\frac{60}{50} = \frac{72}{x} = x = \frac{72 \times 50}{60} = 60$ 

Therefore, required distance is 60 km

### Question 12 – Ravi walks at the uniform rate of 5 km/hr. What distance would he cover in 2 hours 24 minutes?

Solution - Let the required distance be x km

Given that speed = 5 km/h

 $\Rightarrow$  Distance = 5 km and time = 1 hr. = 60 minutes

| Time (in minutes) | 60 | 144 |
|-------------------|----|-----|
| Distance (in Km)  | 5  | Х   |

Since more is the distance, more is the time so this is a case of direct proportion

Thus,  $\frac{60}{5} = \frac{144}{x} = x = \frac{144 \times 5}{60} = 12$ 

Therefore, required distance is 12 km

Question 13 – If the thickness of a pile of 12 cardboards is 65 mm, find the thickness of a pile of 312 such cardboards.

Solution - Let the required thickness of pile of 312 cardboards be x mm

According to given question, we can represent data in terms of table as follows:

| Thickness(in mm)     | 65 | Х   |
|----------------------|----|-----|
| Number of cardboards | 12 | 312 |

Since more is the number of cardboards, more is the thickness so this is a case of direct proportion

Thus,  $\frac{65}{12} = \frac{x}{312} = x = \frac{65 \times 312}{12} = 1690mm = \frac{1690}{1000}m = 1.69m = 1m69cm$ 

Therefore, required thickness is 1m 69 cm

Question 14 – 11 men can dig  $6\frac{3}{4}$  meter-long trench in one day. How many men should be employed for digging 27-meter-long trench of the same type in one day?

Solution - Let requires men for digging 27 m long trench be x

According to given question, we can represent data in terms of table as follows:

| Men                    | 11   | Х  |
|------------------------|------|----|
| Length of trench(in m) | 27/4 | 27 |

Since more is the length, more men is needed so this is a case of direct proportion

Thus, 
$$\frac{11}{27/4} = \frac{x}{27} = x = \frac{11 \times 27 \times 4}{27} = 44$$

Therefore, required men will be 44

## Question 15 – Reenu types 540 words during half an hour. How many words would she type in 8 minutes?

Solution - Let the required number of words be x

According to given question, we can represent data in terms of table as follows:

| Words                   | 540 | Х |
|-------------------------|-----|---|
| Time taken (in minutes) | 30  | 8 |

Since more the number of words, more time is needed so this is a case of direct proportion

Thus,  $\frac{540}{30} = \frac{x}{8} = x = \frac{540 \times 8}{30} = 144$ 

Therefore, required number of words will be 144

**Inverse proportion:** Two quantities x and y are said to be in inverse proportion when they are related to each other in such a way that on increasing the one, the other decreases proportionally and vice versa. That is x y = k, where k is a constant.

Thus,  $x1y1 = x2y2 = x3y3 = \dots = k$ 

**Examples:** 

Example 1 – Observe the tables given below and find whether x and y are inversely proportional:

**(a)** 

| X | 6  | 3  | 36 | 72 | 16 |
|---|----|----|----|----|----|
| У | 24 | 48 | 4  | 2  | 9  |

Solution - Here we will find product x y

 $xy = 6 \times 24 = 3 \times 48 = 36 \times 4 = 72 \times 2 = 16 \times 9 = 144 = constant$ 

Thus, x and y are inversely proportional.

**(b)** 

| X | 9 | 12 | 6 | 2  | 1  |
|---|---|----|---|----|----|
| У | 4 | 3  | 8 | 18 | 36 |

Solution - Here we will find product x y

$$xy = 9 \times 4 = 12 \times 3 = 2 \times 18 = 1 \times 36 \neq 6 \times 8$$

Thus, x and y are not inversely proportional.

Example 2 – If x and y are inversely proportional, find the values of x1, x2, y1 and y2 in the table given below:

| X | 12 | 16 | x1 | x2 | 48 |
|---|----|----|----|----|----|
| У | 8  | y1 | 4  | 16 | y2 |

Solution - It is given that x and y are inversely proportional thus we have x y = constant

 $=> 12 \times 8 = 16 \times y1 = x1 \times 4 = x2 \times 16 = 48 \times y2$ 

Now, 
$$12 \times 8 = 16 \times y1 => y1 = \frac{96}{16} = 6$$

$$12 \times 8 = x1 \times 4 \Longrightarrow x1 = \frac{96}{4} = 24$$

$$12 \times 8 = x2 \times 16 => x2 = \frac{96}{16} = 6$$

$$12 \times 8 = 48 \times y^2 = y^2 = \frac{96}{48} = 2$$

Therefore, x1 = 24, x2 = 6, y1 = 6 and y2 = 2

### Example 3 – If 45 men can do a piece of work in 49 days. In how many days will 35 men do it?

Solution - Let the required number of days be x

According to given question, we can represent data in terms of table as follows:

| Days          | 49 | X  |
|---------------|----|----|
| Number of men | 45 | 35 |

Since Less men will take more days to complete the work so this is a case of inverse proportion

Thus, 
$$49 \times 45 = x \times 35 => x = \frac{49 \times 45}{35} = 63$$

Therefore, required number of days will be 63

# Example 4 – If 14 workers can build a wall in 45 hours, how many workers will be required to do the same work in 35 hours?

Solution - Let the required number of workers be x

According to given question, we can represent data in terms of table as follows:

| Number of workers | 14 | х  |
|-------------------|----|----|
| Number of days    | 45 | 35 |

Since more workers are needed to finish work in fewer hours so this is a case of inverse proportion

Thus,  $14 \times 45 = x \times 35 => x = \frac{14 \times 45}{35} = 18$ 

Therefore, required number of workers is 18

# Example 5 – 6 pipes can fill a tank in 1 hour 24 minutes. How long will it take to fill the tank if 7 pipes of the same type are used?

Solution - Let the required time taken to fill tank be x minutes

According to given question, we can represent data in terms of table as follows:

| Time taken (in minutes) | 84 | x |
|-------------------------|----|---|
| Number of pipes         | 6  | 7 |

Since more pipes will fill tank in less time so this is a case of inverse proportion

Thus, 
$$84 \times 6 = x \times 7 => x = \frac{84 \times 6}{7} = 72$$

Therefore, required time to fill the tank is 72 minutes = 1hour 12 minutes

Example 6 – In a fort, 300 men had provisions for 90 days. After 20 days, 50 men left the fort. How long would the food last at the same rate?

Solution - Remaining Days = 90-20 = 70 days

Remaining men = 300 - 50 = 250 men

Let remaining food be sufficient for 250 men for x days

| Number of days | 70  | Х   |
|----------------|-----|-----|
| Number of men  | 300 | 250 |

Since, less man will have food for more days so this is a case of inverse proportion

Thus, 
$$70 \times 300 = x \times 250 => x = \frac{70 \times 300}{250} = 84$$

Therefore, required days is 84

### Exercise 12B

Question 1- Observe the tables given below and in each case find whether x and y are inversely proportional:

**(a)** 

| X  | 6        | 10 | 14 | 16 | 5 |
|----|----------|----|----|----|---|
| у  | 9        | 15 | 21 | 24 |   |
| TT | 11 0 1 1 |    |    |    |   |

Here, we will find product x y

 $xy = 6 \times 9 \neq 10 \times 15 \neq 14 \times 21 \neq 16 \times 24$ 

Thus, x and y are not inversely proportional.

#### **(b)**

| X | 5  | 9  | 15 | 3  | 45 |
|---|----|----|----|----|----|
| У | 18 | 10 | 6  | 30 | 2  |

Here, we will find product x y

 $xy = 5 \times 18 = 9 \times 10 = 15 \times 6 = 3 \times 30 = 45 \times 2 = 90$  = constant

Thus, x and y are inversely proportional.

#### (c)

| X | 9 | 3  | 6 | 36 |
|---|---|----|---|----|
| У | 4 | 12 | 9 | 1  |

Here, we will find product x y

 $xy = 9 \times 4 = 3 \times 12 = 36 \times 1 \neq 6 \times 9$ 

Thus, x and y are not inversely proportional.

### Question 2 – If x and y are inversely proportional, find the values of x1, x2, y1 and y2 in the table given below:

| X | 8  | x1 | 16 | x2 | 80 |
|---|----|----|----|----|----|
| У | y1 | 4  | 5  | 2  | y2 |

Solution  $_{-}$  It is given that x and y are inversely proportional thus we have x y = constant

 $=> 8 \times y1 = x1 \times 4 = 16 \times 5 = x2 \times 2 = 80 \times y2$ 

Now,  $8 \times y1 = 16 \times 5 => y1 = \frac{80}{8} = 10$ 

- $x1 \times 4 = 16 \times 5 \Longrightarrow x1 = \frac{80}{4} = 20$
- $x2 \times 2 = 16 \times 5 => x2 = \frac{80}{2} = 40$

$$80 \times y2 = 16 \times 5 \Longrightarrow y2 = \frac{80}{80} = 1$$

Therefore, x1 = 20, x2 = 40, y1 = 10 and y2 = 1

# Question 3 – If 35 men can reap a field in 8 days, in how many days can 20 men reap the same field?

Solution - Let the required number of days be x

According to given question, we can represent data in terms of table as follows:

| Days          | 8  | Х  |
|---------------|----|----|
| Number of men | 35 | 20 |

Since Less men will take more days to reap a field so this is a case of inverse proportion

Thus, 
$$8 \times 35 = x \times 20 = x = \frac{8 \times 35}{20} = 14$$

Therefore, required number of days will be 14 days

### Question 4 – 12 men can dig a pond in 8 days. How many men can dig it in 6 days?

Solution - Let the required number of men be x

| Days          | 8  | 6 |
|---------------|----|---|
| Number of men | 12 | Х |

Since more men will take fewer days to dig a pond so this is a case of inverse proportion

Thus, 
$$8 \times 12 = x \times 6 => x = \frac{8 \times 12}{6} = 16$$

Therefore, required number of men will be 16

### Question 5 – 6 cows can graze a field in 28 days. How long would 14 cows take to graze the same field?

Solution - Let the required number of days be x

According to given question, we can represent data in terms of table as follows:

| Days           | 28 | X  |
|----------------|----|----|
| Number of cows | 6  | 14 |

Since more cows will take fewer days to graze a field so this is a case of inverse proportion

Thus,  $28 \times 6 = x \times 14 => x = \frac{28 \times 6}{14} = 12$ 

Therefore, required number of days will be 12 days

Question 6 – A car takes 5 hours to reach a destination by travelling at the speed of 60 km/hr. How many machines would be required to produce the same number of articles in 48 days?

Solution - Let required time taken be x hours

According to given question, we can represent data in terms of table as follows:

| Time taken (in hrs.)   | 5  | X  |
|------------------------|----|----|
| Speed of car (in km/h) | 60 | 75 |

Since more speed will lead to less time taken so this is a case of inverse proportion

Thus,  $5 \times 60 = x \times 75 => x = \frac{5 \times 60}{75} = 4$ 

Therefore, time taken when car travels at speed of 75km/h is 4 hours

Question 7 – A factory requires 42 machines to produce a given number of articles in 56 days. How many machines would be required to produce the same number of articles in 48 days?

Solution - Let the required number of machines be x

According to given question, we can represent data in terms of table as follows:

| Number of machines | 42 | X  |
|--------------------|----|----|
| Number of days     | 56 | 48 |

Since more machines are needed to complete work in less days so this is a case of inverse proportion

Thus,  $42 \times 56 = x \times 48 => x = \frac{42 \times 56}{48} = 49$ 

Therefore, required number of machines is 49

Question 8 – 7 taps of the same size fill a tank in 1 hour 36 minutes. How long will 8 taps of the same size take to fill the tank?

Solution - Let the required time taken to fill tank be x minutes

According to given question, we can represent data in terms of table as follows:

| Time taken (in min | utes) | 96 | Х |
|--------------------|-------|----|---|
| Number of taps     |       | 7  | 8 |

Since more taps will take less time to fill the tank so this is a case of inverse proportion

Thus,  $96 \times 7 = x \times 8 => x = \frac{96 \times 7}{8} = 84$ 

Therefore, required time taken is 84 minutes = 1 hour 24 minutes

Question 9 - 8 taps of the same size fill a tank in 27 minutes. If two taps go out of order, how long would the remaining taps take to fill the tank?

Solution - Remaining taps = 8-2 = 6

Let the required time taken to fill the tank be x minutes

| Time taken (in minutes) | 27 | х |
|-------------------------|----|---|
| Number of taps          | 8  | 6 |

Since less taps will take more time to fill the tank so this is a case of inverse proportion

Thus, 
$$27 \times 8 = x \times 6 => x = \frac{27 \times 8}{6} = 36$$

Therefore, required time taken is 36 minutes

# Question 10 – A Farmer has enough food to feed 28 animals in his cattle for 9 days. How long would the food last, if there were 8 more animals in his cattle?

Solution - Let the required number of days be x

According to given question, we can represent data in terms of table as follows:

| Number of days    | 9  | X  |
|-------------------|----|----|
| Number of animals | 28 | 36 |

Since more animals will have food for fewer days so this is a case of inverse proportion

Thus, 
$$28 \times 9 = x \times 36 = x = \frac{28 \times 9}{36} = 7$$

Therefore, required number of days is 7 days

# Question 11 – A garrison of 900 men had provisions for 42 days. However, a reinforcement of 500 men arrived. For how many days will the food last now?

Solution - Let the required number of days be x

According to given question, we can represent data in terms of table as follows:

| Number of days | 42  | X    |
|----------------|-----|------|
| Number of men  | 900 | 1400 |

Since more men will have food for fewer days so this is a case of inverse proportion

Thus, 
$$42 \times 900 = x \times 1400 => x = \frac{42 \times 900}{1400} = 27$$

Therefore, required number of days is 27 days

Question 12 – In a hostel, 75 students had food provision for 24 days. If 15 students leave the hostel, for how many days would the food provision last?

Solution - Remaining students = 75 - 15 = 60

Let the required number of days be x

According to given question, we can represent data in terms of table as follows:

| Number of days | 24 | Х  |
|----------------|----|----|
| Number of men  | 75 | 60 |

Since fewer men will have food for more days so this is a case of inverse proportion

Thus,  $24 \times 75 = x \times 60 => x = \frac{24 \times 75}{60} = 30$ 

Therefore, required number of days is 30 days

Question 13 – A school has 9 periods a day each of 40 minutes duration. How long would each period be, if the school has 8 periods a day, assuming the number of school hours to be the same?

Solution - Let the required duration of period be x minutes

According to given question, we can represent data in terms of table as follows:

| Duration (in minutes) | 40 | х |
|-----------------------|----|---|
| Number of periods     | 9  | 8 |

Since fewer periods will lead to more duration of a period so this is a case of inverse proportion

Thus, 
$$40 \times 9 = x \times 8 => x = \frac{40 \times 9}{8} = 45$$

Therefore, required duration of period is 45 minutes

### Question 14 - If x and y vary inversely and x = 15 when y = 6, find y when x = 9.

Solution - Given that x and y vary inversely

x = 15 when y = 6

We need to find y when x = 9

We know that product x y will remain constant

Thus,  $15 \times 6 = y \times 9 = y = \frac{90}{9} = 10$ 

### Question 15 -If x and y vary inversely and x = 18 when y = 8, find x when y = 16.

Solution - Given that x and y vary inversely

x = 18 when y = 8

We need to find x when y = 16

We know that product x y will remain constant

Thus, 
$$18 \times 8 = x \times 16 => x = \frac{144}{16} = 9$$

#### Exercise 12C

### Question 1 – If 14 kg of pulses cost Rs 882, what is the cost of 22 kg of pulses?

Solution - Let the required cost be Rs x

According to given question, we can represent data in terms of table as follows:

| Cost (in Rs)               | 882 | Х  |
|----------------------------|-----|----|
| Quantity of pulses (in kg) | 14  | 22 |

Since more is the quantity more will be the cost so this is a case of direct proportion,

Thus,  $\frac{882}{14} = \frac{x}{22} = x = \frac{882 \times 22}{14} = 1386$ 

Therefore, required cost of 22kg of pulses is Rs 1386

### Question 2 – If 8 oranges cost Rs 52, how many oranges can be bought for Rs 169?

Solution - Let the required number of oranges be x

According to given question, we can represent data in terms of table as follows:

| Number of oranges | 8  | X   |
|-------------------|----|-----|
| Cost (in Rs)      | 52 | 169 |

Since more is the number of oranges, more will be the cost so this is a case of direct proportion,

Thus,  $\frac{8}{52} = \frac{x}{169} = x = \frac{169 \times 8}{52} = 26$ 

Therefore, required number of oranges is 26

### Question 3 – A machine fills 420 bottles in 3 hours. How many bottles will it fill in 5 hours?

Solution - Let the required number of bottles be x

According to given question, we can represent data in terms of table as follows:

| Number of bottles     | 420 | X |
|-----------------------|-----|---|
| Time taken (in hours) | 3   | 5 |

Since more is the number of bottles more will be the time taken so this is a case of direct proportion,

Thus,  $\frac{420}{3} = \frac{x}{5} = x = \frac{420 \times 5}{3} = 700$ 

Therefore, required number of bottles is 700

Question 4 – A car is travelling at a uniform speed of 75 km/hr. How much distance will it cover in 20 minutes?

Solution - Given speed = 75 km/h

=> Distance = 75 km and time = 1 hr.

Let the required distance be x km

| Distance (in km)        | 75 | х  |
|-------------------------|----|----|
| Time taken (in minutes) | 60 | 20 |

Since more is distance, more will be the time taken so this is a case of direct proportion,

Thus,  $\frac{75}{60} = \frac{x}{20} => x = \frac{75 \times 20}{60} = 25$ 

Therefore, required distance is 25 km

# Question 5 – The weight of 12 sheets of a thick paper is 40 grams. How many sheets would weigh 1 kg?

Solution - Let the required number of sheets be x

According to given question, we can represent data in terms of table as follows:

| Number of sheets        | 12 | X    |
|-------------------------|----|------|
| Weight of sheets (in g) | 40 | 1000 |

Since more is sheets, more will be the weight so this is a case of direct proportion,

Thus, 
$$\frac{12}{40} = \frac{x}{1000} = x = \frac{12 \times 1000}{40} = 300$$

Therefore, required number of sheets is 300

# Question 6 – A pole 14 m high casts a shadow of 10 m. At the same time, what will be the height of a tree, the length of whose shadow is 7 meters?

Solution - Let required height of pole be x m

According to given question, we can represent data in terms of table as follows:

| Height of pole (in m)       | 14 | Х |
|-----------------------------|----|---|
| Length of its shadow (in m) | 10 | 7 |

Since more the height of pole, more will be the length of its shadow so this is a case of direct proportion

Thus,  $\frac{14}{10} = \frac{x}{7}$ 

### => x = 9.8m

Therefore, required height of pole = 9.8 m

### Question 7 – A photograph of a bacteria enlarged 50000 times attains a length of 5 cm. The actual length of bacteria is?

Solution - Let the actual length of bacteria be x cm

Thus,  $x \times 50000 = 5$ 

 $\Rightarrow x = \frac{5}{50000} = \frac{1}{10000} = 10^{-4} cm$ 

#### Question 8 – 6 pipes fill a tank in 120 minutes, and then 5 pipes can build it in?

Solution - Let the required time taken to fill the tank be x minutes

According to given question, we can represent data in terms of table as follows:

| Time taken (in minutes) | 120 | Х |
|-------------------------|-----|---|
| Number of pipes         | 6   | 5 |

Since fewer pipes will take more time to fill tank so this is a case of inverse proportion

Thus, 
$$120 \times 6 = x \times 5 = x = \frac{120 \times 6}{5} = 144$$

Therefore, required time taken is 144 minutes

### Question 9 – 3 persons can build a wall in 4 days, and then 4 persons can build it in?

Solution - Let the required number of days be x

According to given question, we can represent data in terms of table as follows:

| Number of days    | 4 | Х |
|-------------------|---|---|
| Number of persons | 3 | 4 |

Since more people will take less time to build a wall so this is a case of inverse proportion

Thus,  $4 \times 3 = x \times 4 => x = 3$ 

Therefore, required number of days is 3

# Question 10 – A car takes 2 hours to reach a destination by travelling at 60 km/hr. How long will it take while travelling at 80 km/hr.?

Solution - Let required time taken by car while travelling at 80 km/h be x hours

According to given question, we can represent data in terms of table as follows:

| Time taken (in hours) | 2  | X  |
|-----------------------|----|----|
| Speed (in km/h)       | 60 | 80 |

Since more speed will lead to less time so this is a case of inverse proportion

Thus,  $2 \times 60 = x \times 80 => x = \frac{120}{80} = \frac{3}{2} = 1.5$  hours = 1 hr 30 minutes

Therefore, required time taken is 1 hour and 30 minutes