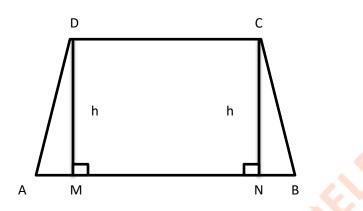
Introduction

Trapezium: A trapezium is a quadrilateral in which only one pair of opposite sides are parallel and the other pair of opposite sides is not parallel.



ABCD is a trapezium with AB//CD

Here, AB and CD are two bases of trap. ABCD

DM and CN are height or altitude of trap. ABCD

Area of trapezium can be computed using the formula:

Area of trapezium = $1 \times \text{Sum}$ of parallel sides \times Distance between them

Area of trapezium = $\{1 \times (AB + CD) \times h\}$ sq. units 2

2

Examples

Example 1 – Two parallel sides of a trapezium are of lengths 27 cm and 19 cm respectively, and the distance between them is 14 cm. Find the area of the trapezium.

Solution - It is given that length of two parallel sides is 27 cm and 19 cm respectively

Distance between them (h) = 14 cm

Area of trapezium = $\frac{1}{2}$ × Sum of parallel sides × Distance between them

Area of trapezium = $1 \times (27+19) \times 14 = \frac{46 \times 14}{2} = 322 cm^2$

Example 2 – The area of a trapezium is $352 \ cm^2$ and the difference between its parallel sides is 16 cm. If one of the parallel sides is of length 25 cm, find the length of the other.

Solution - Let the length of required side be x cm

It is given that Area of a trapezium = $352 \ cm^2$

One parallel side = 25 cm

Distance between two parallel sides = 16 cm

We know that Area of trapezium = 1 \times Sum of parallel sides \times Distance between them

-		
7		
L		
_		

 $352 = 1 \qquad \times (25 + x) \times 16$

=> 704/16 = 25 + x

=> 44 = 25 + x

=> 44-25 = x

=> x = 19 cm

Example 3 – The area of a trapezium is $168 \text{ } \text{cm}^2$ and its height is 8 cm. If one of the parallel sides is longer than the other by 6 cm, find the length of each of the parallel sides.

Solution - Let length of one parallel side be x cm

Then, length of other parallel side = (x+6) cm

Height = 8 cm

Area of trapezium = $168 \ cm^2$

We know that Area of trapezium = $\frac{1}{2}$ × Sum of parallel sides × Distance between them

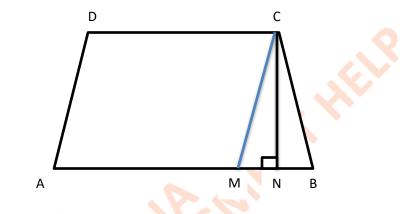
$$\frac{168 = 1}{2} \times (x + x + 6) \times 8$$

- => 336/8 = 6+2x
- =>42=6+2x
- => 42-6 = 2x
- => x = 36/2 = 18 cm

Thus, lengths of parallel sides are 18 cm and 24 cm

Example 4 – The parallel sides of a trapezium are 25 cm and 13 cm; its nonparallel sides are equal, each being 10 cm. Find the area of the trapezium.

Solution -



ABCD is a trapezium with AB//CD

It is given that AB = 25 cm, CD = 13 cm, AD = BC = 10 cm

We construct CM//AD and CN perpendicular to AB

So, we see that AMCD is a parallelogram.

Since, opposite sides of parallelogram are equal

Thus, AM = CD = 13 cm

MB = AB - AM = 25-13 = 12 cm

Also, AD = CM = 10 cm

Now we have CM = 10 cm, BC = 10 cm

So, Δ CMB is an isosceles triangle and CN is perpendicular on MB

Thus, N is the midpoint of MB

=> MN = NB = MB/2 = 12/2 = 6 cm

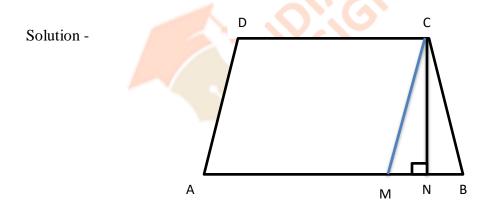
Now, in Δ CMN, by Pythagoras theorem,

- $CM^2 = CN^2 + MN^2$
- $=> 10^2 = CN^2 + 6^2$
- $=> 100 = CN^2 + 36$
- $=> 64 = CN^2$
- => CN = 8 cm

Area of trapezium = $\frac{1}{2}$ × Sum of parallel sides × Distance between them

Area of trapezium = $\frac{1}{2} \times (25+13) \times 8 = \frac{38 \times 8}{2} = 152 cm^2$

Example 5 – ABCD is a trapezium in which AB//DC, AB = 78 cm, CD = 52 cm, AD = 28 cm and BC = 30 cm. Find the area of the trapezium.



ABCD is a trapezium with AB//CD

It is given that AB = 78 cm, CD = 52 cm, AD = 28 cm and BC = 30 cm

We construct CM//AD and CN perpendicular to AB

So, we see that AMCD is a parallelogram.

Since opposite sides of parallelogram are equal

Thus, AM = CD = 52 cm and AD = CM = 28 cm

MB = AB - AM = 78-52 = 26 cm

Now, in Δ CMB, CM= 28 cm, MB = 26 cm and BC = 30 cm

Area of $\Delta CMB = \sqrt{s(s-a)(s-b)(s-c)}$

Where s = (28+26+30)/2 = 84/2 = 42 cm

Area of $\Delta CMB = \sqrt{42(42 - 28)(42 - 26)(42 - 30)}$

Area of $\triangle CMB = \sqrt{42 \times 16 \times 14 \times 12}$

 $=\sqrt{2\times7\times3\times2\times2\times2\times2\times2\times7\times3\times4}$

 $= 2 \times 2 \times 2 \times 2 \times 3 \times 7 = 336 \ cm^2$

Also, Area of $\Delta CMB = \frac{1}{2} \times MB \times CN$

2

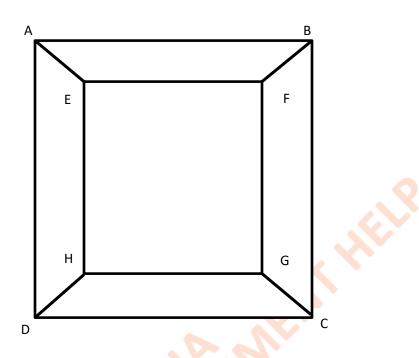
 $\Rightarrow 336 = \frac{1}{2} \times 26 \times CN$

=> CN = 336/13 cm

Area of trapezium = $1 \times Sum$ of parallel sides $\times Distance$ between them

Area of trapezium = $\frac{1}{2 \times 13} \times (78 + 52) \times 336 = \frac{130 \times 336}{26} = 1680 cm^2$

Example 6 – The adjacent figure shows the diagram of a picture frame having outer dimensions 28 cm \times 32 cm and inner dimensions 20 cm \times 24 cm. If the width of each section is the same, find the area of each section of the frame.



Solution - It is given that Outer dimensions = 28cm $\times 32$ cm = CD \times BC

And inner dimensions = 20cm $\times 24$ cm = GH \times FG

Also, given that width of each section is same

Width of AEHD = Width of BFGC = $\frac{1}{2}$ (CD – GH) = $\frac{1}{2}$ (28 – 20) = 8/2 = 4 cm

Width of ABFE = Width of DCGH = $\frac{1}{2}$ (BC - FG) = $\frac{1}{2}$ (32 - 24) = 8/2 = 4 cm

We can see that each section is a trapezium.

Area of AEHD = Area of BFGC = $1 \times \text{Sum of parallel sides} \times \text{Distance between them}$

$$1 \times (24+32) \times 4 = 224/2 = 112 \ cm^2$$

2

Also, Area of ABFE = Area of DCGH = $1 \times \text{Sum of parallel sides} \times \text{Distance between them}$

$$\frac{1}{2} \times (20+28) \times 4 = 192/2 = 96 \ cm^2$$

Exercise 18A

Question 1 – Find the area of a trapezium whose parallel sides are 24 cm and 20 cm and the distance between them is 15 cm.

Solution - It is given that length of two parallel sides is 24 cm and 20 cm respectively

Distance between them (h) = 15 cm

Area of trapezium = $\frac{1}{2}$ × Sum of parallel sides × Distance between them

Area of trapezium = $\underline{1}_{2} \times (24+20) \times 15 = \frac{44 \times 15}{2} = 330 cm^{2}$

Question 2 – Find the area of a trapezium whose parallel sides are 38.7 cm and 22.3 cm, and the distance between them is 16 cm.

Solution - It is given that length of two parallel sides is 38.7 cm and 22.3 cm respectively

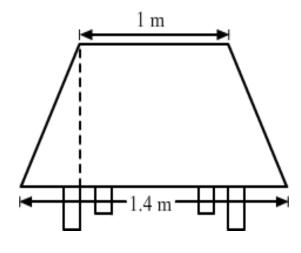
Distance between them (h) = 16 cm

2

Area of trapezium = $1 \times \text{Sum of parallel sides} \times \text{Distance between them}$

Area of trapezium = $\frac{1}{2}$ × (38.7+22.3) × 16 = $\frac{61 \times 16}{2}$ = 488*cm*²

Question 3 – The shape of the top surface of a table is trapezium. Its parallel sides are 1 m and 1.4 m and the perpendicular distance between them is 0.9 m. Find its area.



Solution - It is given that length of two parallel sides is 1 m and 1.4 m respectively

Distance between them (h) = 0.9 m

Area of trapezium = $\frac{1}{2}$ × Sum of parallel sides × Distance between them

Area of trapezium = $\frac{1}{2}$ × (1+1.4) × 0.9 = $\frac{2.4 \times 0.9}{2}$ = 1.08m²

Question 4 – The area of a trapezium is 1080 cm^2 . If the lengths of its parallel sides be 55 cm and 35 cm, find the distance between them.

Solution - Let distance between parallel sides be x cm

It is given that Area of a trapezium = $1080 \ cm^2$

One parallel side = 55 cm

Other parallel side = 35 cm

We know that Area of trapezium = $1 \times Sum of parallel sides \times Distance between them$

$$\frac{1080 = 1}{2} \times (55 + 35) \times x$$

=> 2160 = 90 x

=> x = 2160/90 = 24

Thus, distance between parallel sides = 24 cm

Question 5 – A field is in the form of a trapezium. Its area is 1586 m^2 and the distance between its parallel sides is 26 m. If one of the parallel sides is 84 m, find the other.

Solution - Let the length of required side be x cm

It is given that Area of a trapezium = $1586 m^2$

One parallel side = 84 m

Distance between two parallel sides = 26 m

We know that Area of trapezium = $1 \times \text{Sum of parallel sides} \times \text{Distance between them}$

```
2
```

 $1586 = 1 \times (84 + x) \times 26$

2

```
=> 3172/26 = 84 + x
```

=> 122 = 84 + x

=> 122-84 = x

```
=> x = 38 m
```

Question 6 – The area of a trapezium is $405cm^2$. Its parallel sides are in the ratio 4:5 and the distance between them is 18 cm. Find the length of each of the parallel sides.

Solution - Let length of one parallel side be 4x cm Then, length of other parallel side = 5x cm Distance between them = 18 cm Area of trapezium = 405 cm^2 We know that Area of trapezium = $\frac{1}{2}$ × Sum of parallel sides × Distance between them $405 = 1 \times (4 \text{ x} + 5 \text{x}) \times 18$ => 810/18 = 9x => 45 = 9x => x = 45/9 = 5 cm

Thus, lengths of parallel sides are 4(5) = 20 cm and 5(5) = 25 cm

Question 7 – The area of a trapezium is 180 cm^2 and its height is 9 cm. If one of the parallel sides is longer than the other by 6 cm, find the two parallel sides.

Solution - Let length of one parallel side be x cm

Then, length of other parallel side = (x+6) cm

Height = 9 cm

Area of trapezium = $180 \ cm^2$

We know that Area of trapezium = $1 \times \text{Sum of parallel sides} \times \text{Distance between them}$

 $\frac{180 = 1}{2} \times (x + x + 6) \times 9$

=> 360/9 = 6+2x

=>40=6+2x

=> 40-6 = 2x

=> x = 34/2 = 17 cm

Thus, lengths of parallel sides are 17 cm and 23 cm

Question 8 – In a trapezium- shaped field, one of the parallel sides is twice the other. If the area of the field is 9450 m^2 and the perpendicular distance between the two parallel sides is 84 m, find the length of the longer of the parallel sides.

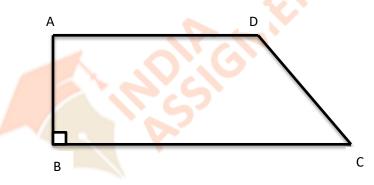
Solution - Let length of one parallel side be x cm

Then, length of other parallel side = 2x cm

Distance between them = 84 m Area of trapezium = 9450 m^2 We know that Area of trapezium = $\frac{1}{2}$ × Sum of parallel sides × Distance between them $9450 = \frac{1}{2}$ × (x+ 2x) × 84 => 18900/84 = 3x => 225 = 3x => x = 225/3 = 75 m

Thus, the length of longer parallel side is 2(75) = 150m

Question 9 – The length of the fence of a trapezium-shaped field ABCD is 130 m and side AB is perpendicular to each of the parallel sides AD and BC. If BC = 54 m, CD = 19 m and AD = 42 m, find the area of the field.



Solution - It is given that ABCD is a trapezium and length of fence = 130 m

BC = 54 m, CD = 19 m and AD = 42 m

We know that Length of fence = 130 m

=> Perimeter = 130 m

 \Rightarrow AB+BC+CD+AD = 130

=> AB+54+19+42 = 130

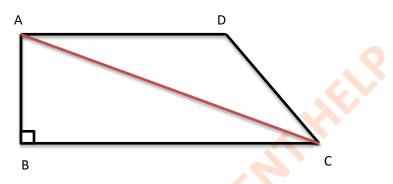
=> AB + 115 = 130

=> AB = 130-115 = 15 m

Area of trapezium = $\frac{1}{2}$ × Sum of parallel sides × Distance between them

Area of trapezium =
$$\frac{1}{2} \times (54+42) \times 15 = \frac{96 \times 15}{2} = 720 \ m^2$$

Question 10 – In the given figure, ABCD is a trapezium in which AD//BC, L ABC = 90°, AD = 16 cm, AC = 41 cm and BC = 40 cm. Find the area of the trapezium.



Solution - It is given that ABCD is a trapezium with AD//BC

 $L ABC = 90^{\circ}, AD = 16 \text{ cm}, AC = 41 \text{ cm}, BC = 40 \text{ cm}$

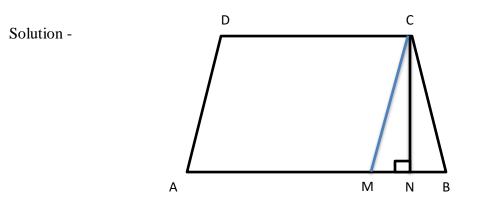
In triangle ABC, by Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

 $=>41^2 = AB^2 + 40^2$

- $=> 1681 = AB^2 + 1600$
- $\Rightarrow 1681 1600 = AB^2$
- $=> AB^2 = 81 \text{ cm}$
- \Rightarrow AB = 9 cm

Question 11 – The parallel sides of a trapezium are 20 cm and 10 cm. Its nonparallel sides are both equal, each being 13 cm. Find the area of the trapezium.



ABCD is a trapezium with AB//CD

It is given that AB = 20 cm, CD = 10 cm, AD = BC = 13 cm

We construct CM//AD and CN perpendicular to AB

So, we see that AMCD is a parallelogram.

Since, opposite sides of parallelogram are equal

Thus, AM = CD = 10 cm

MB = AB - AM = 20-10 = 10 cm

Also, AD = CM = 13 cm

Now, we have CM = 13 cm, BC = 13 cm

So, Δ CMB is an isosceles triangle and CN is perpendicular on MB

Thus, N is the midpoint of MB

=> MN = NB = MB/2 = 10/2 = 5 cm

Now, in Δ CMN, by Pythagoras theorem,

$$CM^2 = CN^2 + MN^2$$

 $=> 13^2 = CN^2 + 5^2$

 $=> 169 = CN^2 + 25$

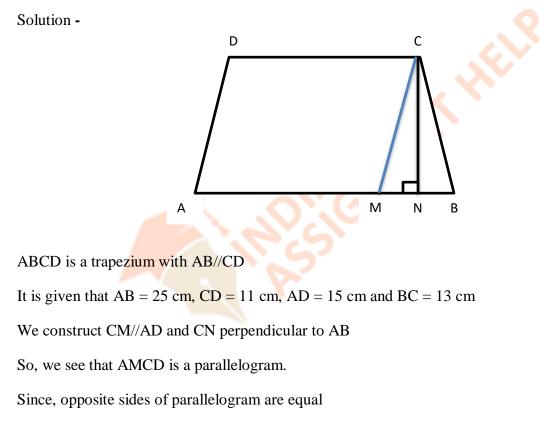
$$=> 144 = CN^2$$

=> CN = 12 cm

Area of trapezium = $\frac{1}{2}$ × Sum of parallel sides × Distance between them

Area of trapezium = $\frac{1}{2} \times (20+10) \times 12 = \frac{30 \times 12}{2} = 180 cm^2$

Question 12 – The parallel sides of a trapezium are 25 cm and 11 cm, while its nonparallel sides are 15 cm and 13 cm. Find the area of the trapezium.



Thus, AM = CD = 11 cm

MB = AB - AM = 25-11 = 14 cm

Also, AD = CM = 15 cm

Now, in \triangle CMB, we have CM = 15 cm, BC = 13 cm and MB = 14 cm

Area of $\Delta CMB = \sqrt{s(s-a)(s-b)(s-c)}$

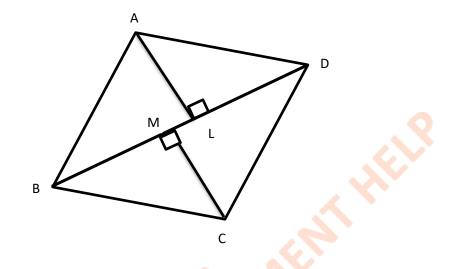
Where s =
$$(15+13+14)/2 = 42/2 = 21 \text{ cm}$$

Area of $\Delta \text{CMB} = \sqrt{21(21-15)(21-14)(21-13)}$
Area of $\Delta \text{CMB} = \sqrt{21 \times 6 \times 7 \times 8}$
 $= \sqrt{7 \times 3 \times 2 \times 3 \times 7 \times 2 \times 2 \times 2}$
 $= 2 \times 2 \times 3 \times 7 = 84 \text{ cm}^2$
Also, Area of $\Delta \text{CMB} = \frac{1}{2} \times \text{MB} \times \text{CN}$
 $=> 84 = \frac{1}{2} \times 14 \times \text{CN}$
 $=> \text{CN} = \frac{84}{7} = 12 \text{ cm}$
Area of trapezium = 1 \times Sum of parallel sides \times Distance between them

Area of trapezium = $\frac{1}{2} \times (25+11) \times 12 = \frac{36 \times 12}{2} = 216 cm^2$

Area of a polygon:

For a polygon whether regular or irregular, we calculate their areas by dividing them into rectangles, parallelograms, triangles, and trapezium.



Suppose ABCD is a quadrilateral and BD is a diagonal

We draw perpendicular AL and CM on BD

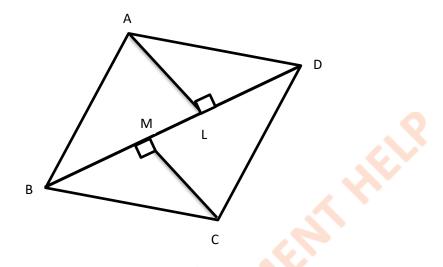
Area of Quadrilateral ABCD = Area of $\triangle ABD$ + Area of $\triangle BCD$

$$= (\frac{1}{2} \times BD \times AL) + (\frac{1}{2} \times BD \times CM)$$

= ($\frac{1}{2} \times BD$) (AL+CM)

Examples:

Example 1 – In the given figure, ABCD is a quadrilateral in which BD = 14 cm, AL \perp BD, CM \perp BD such that AL = 6 cm and CM = 8 cm. Find the area of quad. ABCD



Solution - Given that ABCD is a quadrilateral, AL and CM are perpendiculars on BD

BD = 14 cm, AL = 6 cm and CM = 8 cm

Since Area of Quadrilateral ABCD = Area of $\triangle ABD$ + Area of $\triangle BCD$

$$= (\frac{1}{2} \times BD \times AL) + (\frac{1}{2} \times BD \times CM)$$

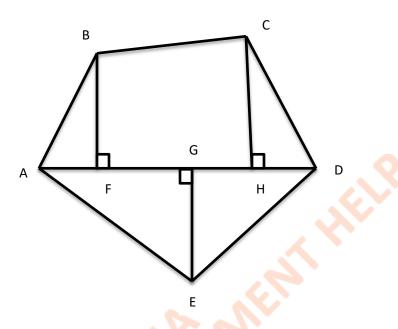
= ($\frac{1}{2} \times BD$) (AL+CM)

 $=(\frac{1}{2} \times 14)(6+8)$

 $= \frac{1}{2} \times 14 \times 14$

 $= 98 \ cm^2$

Example 2 – Find the area of the given pentagon ABCDE in which each one of BF, CH and EG is perpendicular to AD such that AF = 9 cm, AG = 13 cm, AH = 19 cm, AD = 24 cm, BF = 6 cm, CH = 8 cm and EG = 9 cm.



Solution - Given that ABCDE is a pentagon in which BF, CH and EG are perpendicular to AD AF = 9 cm, AG = 13cm, AH = 19 cm, AD = 24 cm, BF = 6 cm, CH = 8 cm and EG = 9 cm HD = AD - AH = 24 - 19 = 5 cm

FH = AH - AF = 19 - 9 = 10 cm

We can see that pentagon ABCDE is divided into 4 parts

Thus, Area of given pentagon ABCDE = area ($\triangle ABF$) + area ($\triangle CHD$) + area ($\triangle AED$) + area (trap. BCHF)

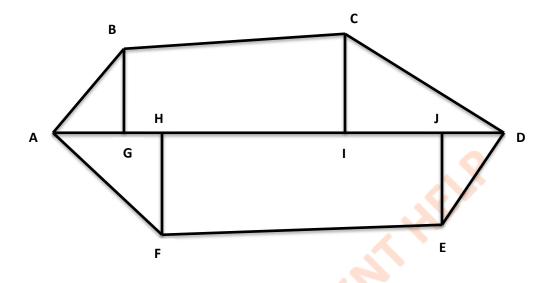
 $= (\frac{1}{2} \times AF \times BF) + (\frac{1}{2} \times CH \times HD) + (\frac{1}{2} \times AD \times EG) + (\frac{1}{2} \times (BF+CH) \times FH)$

 $= (\frac{1}{2} \times 9 \times 6) + (\frac{1}{2} \times 8 \times 5) + (\frac{1}{2} \times 24 \times 9) + (\frac{1}{2} \times (6+8) \times 10)$

=(27+20+108+70)

 $= 225 \ cm^2$

Example 3 – Find the area of the given hexagon ABCDEF in which each one of BG, CI, EJ and FH is perpendicular to AD and it is being given that AG = 6 cm, AH = 10 cm, AI = 18 cm, AJ = 21 cm, AD = 27 cm, BG = 5 cm, CI = 6 cm, EJ = 4 cm and FH = 6 cm.



Solution - Given that ABCDEF is a hexagon in which BG, CI, EJ and FH are perpendicular to AD

AG = 6 cm, AH = 10 cm, AI = 18 cm, AJ = 21 cm, AD = 27 cm, BG = 5 cm, CI = 6 cm, EJ = 4 cm and FH = 6 cm

DI = AD - AI = 27 - 18 = 9 cm

DJ = AD - AJ = 27 - 21 = 6 cm

GI = AI - AG = 18 - 6 = 12 cm

HJ = AJ - AH = 21 - 10 = 11 cm

We can see that hexagon ABCDEF is divided into 6 parts

Thus, Area of given hexagon ABCDEF = area ($\triangle AGB$) + area ($\triangle CID$) + area ($\triangle JDE$) + area ($\triangle AHF$) + area (trap. BCIG) + area (trap. HJEF)

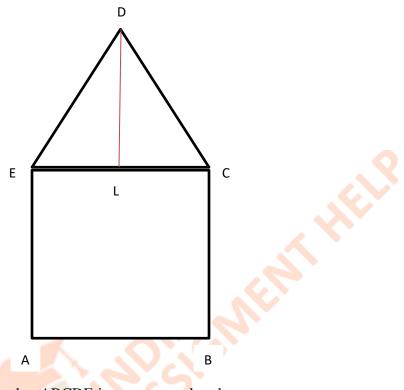
 $= (\frac{1}{2} \times AG \times BG) + (\frac{1}{2} \times ID \times CI) + (\frac{1}{2} \times DJ \times EJ) + (\frac{1}{2} \times AH \times HF) + (\frac{1}{2} \times (BG+CI) \times GI) + (\frac{1}{2} \times (HF+JE) \times HJ)$

 $= (\frac{1}{2} \times 6 \times 5) + (\frac{1}{2} \times 9 \times 6) + (\frac{1}{2} \times 6 \times 4) + (\frac{1}{2} \times 10 \times 6) + (\frac{1}{2} \times (5+6) \times 12) + (\frac{1}{2} \times (6+4) \times 11)$

$$=(15+27+12+30+66+55)$$

 $= 205 cm^{2}$

Example 4 – In the given figure ABCDE is a pentagonal park in which DE = DC, AB = BC = CE = EA = 25 m and its total height is 41 m. Find the area of the park.



Solution - It is given that ABCDE is a pentagonal park

$$DE = DC$$
, $AB = BC = CE = EA = 25 m$

Total height = 41 m

DL = total height - BC = 41 - 25 = 16 m

We draw DL perpendicular on EC

Area of pentagonal park = area (ΔDCE) + area (square ABCE)

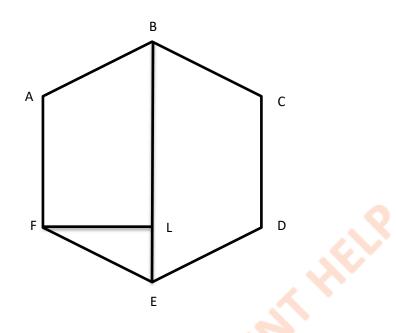
$$= (\frac{1}{2} \times CE \times DL) + (AB \times AB)$$

 $=(\frac{1}{2} \times 25 \times 16) + (25 \times 25)$

= 200 + 625

 $= 825 m^2$

Example 5 – Find the area of the given hexagon ABCDEF in which each side measures 5 cm, height BE = 11 cm and width FD = 8 cm



Solution - It is given that ABCDEF is a hexagon in which each side is 5 cm

BE = 11 cm and FD = 8 cm

FL = 8/2 = 4 cm

We join BE

Area of hexagon ABCDEF = area (trap. ABEF) + area (trap. BCDE)

 $= 2 \times area$ (trap. ABEF)

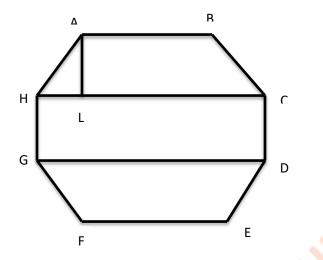
 $= 2 \times (\frac{1}{2} \times (AF + BE) \times FL)$

 $= 2 \times (\frac{1}{2} \times (5+11) \times 4)$

 $= 16 \times 4$

 $= 64 \ cm^2$

Example 6 – Find the area of an octagon ABCDEFGH having each side equal to 5 cm, HC = 11 cm and AL \perp HC such that AL = 4 cm



Solution - It is given that ABCDEFGH is an octagon

Each side = 5 cm, HC = 11 cm, AL = 4 cm

We draw AL \perp HC

Area of octagon ABCDEFGH = area (trap. ABCD) + area (trap. DEFG) + area (rect. HCDG)

 $= 2 \times \text{area} (\text{trap. ABCD}) + \text{area} (\text{rect. HCDG})$

$$= 2 \times (\frac{1}{2} \times (AB + HC) \times AL) + (GD \times CD)$$

$$= ((AB+HC) \times AL) + (GD \times CD)$$

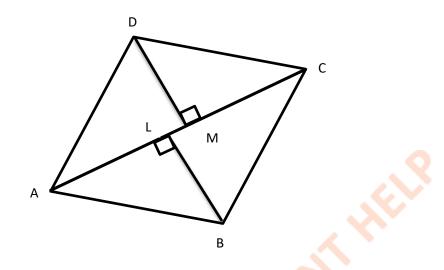
$$=((5+11)\times 4)+(11\times 5)$$

 $=(16 \times 4) + (55)$

 $= 64+55 = 119 \ cm^2$

Exercise 18B

Question 1 – In the given figure, ABCD is a quadrilateral in which AC = 24 cm, $BL \perp AC$ and $DM \perp AC$ such that BL = 8 cm and DM = 7 cm. Find the area of quad. ABCD



Solution - Given that ABCD is a quadrilateral, BL and DM are perpendiculars on AC

AC = 24 cm, BL = 8 cm and DM = 7 cm

Since, Area of Quadrilateral ABCD = Area of $\triangle ADC$ + Area of $\triangle ABC$

$$= (\frac{1}{2} \times AC \times DM) + (\frac{1}{2} \times AC \times BL)$$

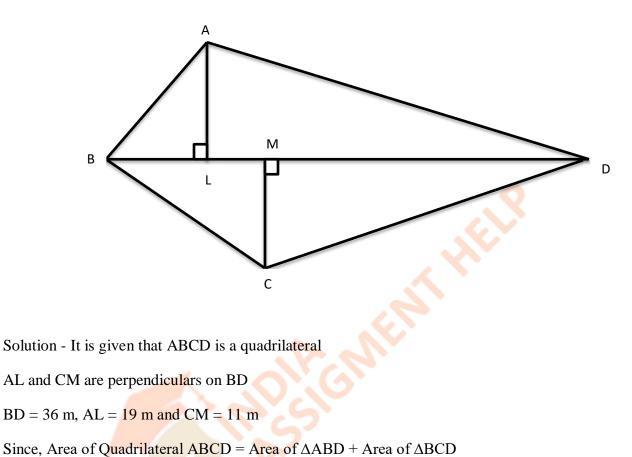
= ($\frac{1}{2} \times AC$) (DM+BL)

 $=(\frac{1}{2}\times 24)(7+8)$

 $= \frac{1}{2} \times 24 \times 15$

 $= 180 \ cm^2$

Question 2 – In the given figure, ABCD is a quadrilateral-shaped field in which diagonal BD is 36 m, $AL \perp BD$ and $CM \perp BD$ such that AL = 19 m and CM = 11 m. Find the area of the field.



 $= (\frac{1}{2} \times BD \times AL) + (\frac{1}{2} \times BD \times CM)$

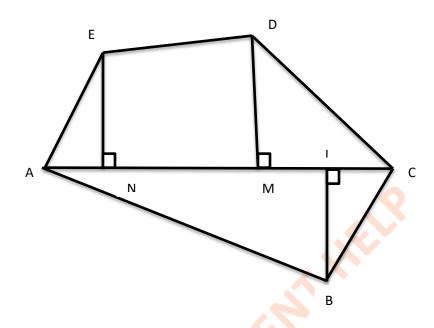
 $= (\frac{1}{2} \times BD) (AL+CM)$

= (½ × 36) (19+11)

 $= \frac{1}{2} \times 36 \times 30$

$$= 540 \ m^2$$

Question 3 – Find the area of pentagon ABCDE in which $BL \perp AC$, $DM \perp AC$ and $EN \perp AC$ such that AC = 18 cm, AM = 14 cm, AN = 6 cm, BL = 4 cm, DM = 12 cm and EN = 9 cm.



Solution - Given that ABCDE is a pentagon in which BL, DM and EN are perpendicular on AC

AC = 18 cm, AM = 14 cm, AN = 6 cm, BL = 4 cm, DM = 12 cm and EN = 9 cm

CM = AC - AM = 18 - 14 = 4 cm

NM = AM - AN = 14 - 6 = 8 cm

We can see that pentagon ABCDE is divided into 4 parts

Thus, Area of given pentagon ABCDE = area (ΔAEN) + area (ΔDMC) + area (ΔABC) + area (trap. EDMN)

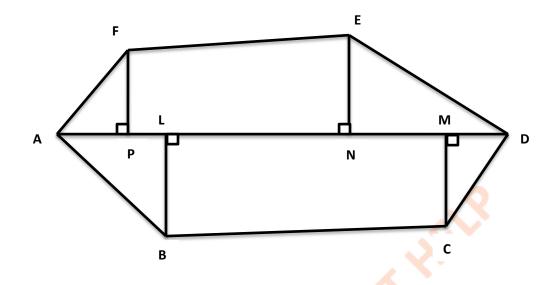
 $= (\frac{1}{2} \times AN \times EN) + (\frac{1}{2} \times CM \times DM) + (\frac{1}{2} \times AC \times BL) + (\frac{1}{2} \times (EN+DM) \times NM)$

 $= (\frac{1}{2} \times 6 \times 9) + (\frac{1}{2} \times 4 \times 12) + (\frac{1}{2} \times 18 \times 4) + (\frac{1}{2} \times (9+12) \times 8)$

=(27+24+36+84)

 $= 171 \ cm^2$

Question 4 – Find the area of hexagon ABCDEF in which $BL \perp AD$, $CM \perp AD$, $EN \perp AD$ and $FP \perp AD$ such that AP = 6 cm, PL = 2 cm, LN = 8 cm, NM = 2 cm, MD = 3 cm, FP = 8cm, EN = 12 cm, BL = 8 cm and CM = 6 cm.



Solution - Given that ABCDEF is a hexagon in which BL, CM, EN and FP are perpendicular on AD

AP = 6 cm, PL = 2 cm, LN = 8 cm, NM = 2 cm, MD = 3 cm, FP = 8 cm, EN = 12 cm, BL = 8 cmand CM = 6 cm

DN = NM + MD = 2 + 3 = 5 cm

AL = AP+PL = 6+2 = 8 cm

PN = PL + LN = 2 + 8 = 10 cm

LM = LN + NM = 8 + 2 = 10 cm

We can see that hexagon ABCDEF is divided into 6 parts

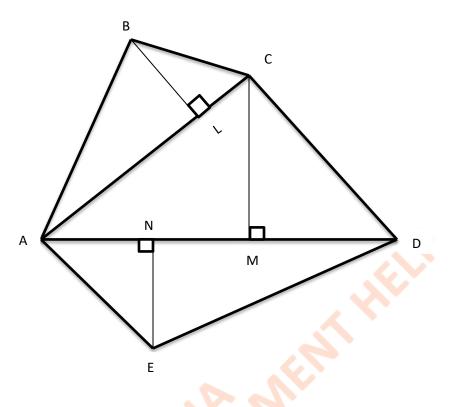
Thus, Area of given hexagon ABCDEF = area (Δ AFP) + area (Δ FND) + area (Δ DMC) + area (Δ ABL) + area (trap. FENP) + area (trap. LMCB)

 $= (\frac{1}{2} \times AP \times FP) + (\frac{1}{2} \times ND \times EN) + (\frac{1}{2} \times DM \times CM) + (\frac{1}{2} \times AL \times BL) + (\frac{1}{2} \times (FP+EN) \times PN) + (\frac{1}{2} \times (BL+CM) \times LM)$

 $= (\frac{1}{2} \times 6 \times 8) + (\frac{1}{2} \times 5 \times 12) + (\frac{1}{2} \times 3 \times 6) + (\frac{1}{2} \times 8 \times 8) + (\frac{1}{2} \times (8+12) \times 10) + (\frac{1}{2} \times (8+6) \times 10)$

 $=(24+30+9+32+100+70)=256cm^{2}$

Question 5 – Find the area of pentagon ABCDE in which $BL \perp AC$, $CM \perp AD$ and $EN \perp AD$ such that AC = 10 cm, AD = 12 cm, BL = 3 cm, CM = 7 cm and EN = 5 cm.



Solution - It is given that ABCDE is a pentagon in which BL, CM and EN are perpendicular on AD

AC = 10 cm, AD = 12 cm, BL = 3 cm, CM = 7 cm and EN = 5 cm

We can see that pentagon ABCDE is divided into 3 triangles

Area of pentagon ABCDE = area (\triangle ABC) + area (\triangle ADC) + area (\triangle AED)

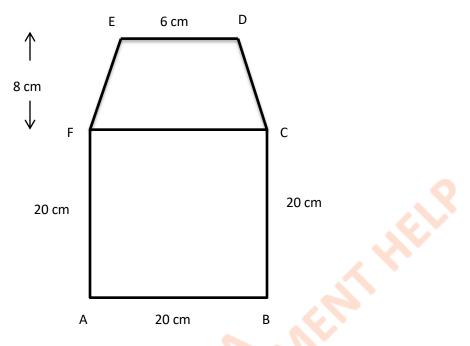
$$= (\frac{1}{2} \times AC \times BL) + (\frac{1}{2} \times AD \times CM) + (\frac{1}{2} \times AD \times EN)$$

$$= (\frac{1}{2} \times 10 \times 3) + (\frac{1}{2} \times 12 \times 7) + (\frac{1}{2} \times 12 \times 5)$$

$$= 15 + 42 + 30$$

$$= 87 \ cm^2$$

Question 6 – Find the area enclosed by the given figure ABCDEF as per dimensions given herewith.



Solution - From the figure we can see that side of square is 20 cm

And, parallel sides of trapezium are 6 cm and 20 cm respectively and height is 8 cm

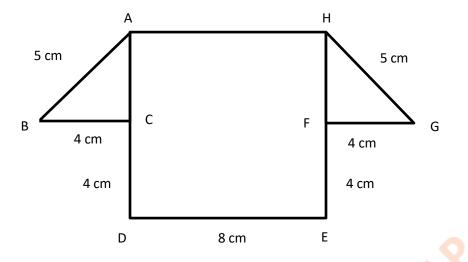
Thus, Area of given figure ABCDEF = area (square ABCD) + area (trap. EDCF)

=
$$(AB \times AB) + ((\frac{1}{2} \times (ED + FC) \times height)$$

$$= (20 \times 20) + ((\frac{1}{2} \times (6 + 20) \times 8))$$

$$=400 + 104$$

 $= 504 \ cm^2$



Solution - From the given figure, we can see that figure ABCDEFGH is divided into 2 triangles and a rectangle

In $\triangle ABC$, by Pythagoras theorem,

- $AB^2 = AC^2 + BC^2$ $5^2 = AC^2 + 4^2$
- $25 = AC^2 + 16$
- $25 16 = AC^2$
- $AC^{2} = 9$

AC = 3 cm

- So, AC = HF = 3 cm
- AD = AC + CD = 3 + 4 = 7 cm

Thus, area of given figure ABCDEFGH = $2 \times \text{area} (\Delta ABC) + \text{area} (\text{rectangle AHED})$

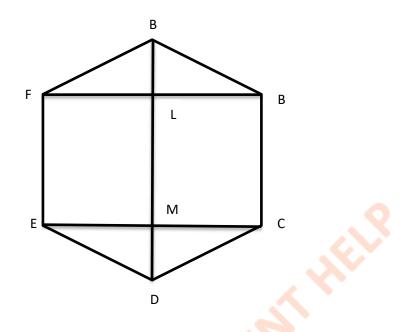
$$= 2 \times (\frac{1}{2} \times BC \times AC) + (DE \times AD)$$

 $= (4 \times 3) + (8 \times 7)$

= 12+56

 $= 68 \ cm^2$

Question 8 – Find the area of a regular hexagon ABCDEF in which each side measures 13 cm and whose height is 23 cm, as shown in the given figure.



Solution - It is given that ABCDEF is a hexagon in which each side is 13 cm

Height = 23 cm

Let us take BL = DM = x cm

LM = 13 cm

Since, height = 23 cm

BD = 23 cm

x+x+13 = 23

2x + 13 = 23

2x = 23 - 13 = 10

$$x = 5$$

Thus, BL = DM = 5 cm

Now, in Δ BFL, by Pythagoras theorem,

 $BF^2 = BL^2 + FL^2$

 $13^{2} = 5^{2} + FL^{2}$ $169 = 25 + FL^{2}$ $169 - 25 = FL^{2}$ $FL^{2} = 144$ FL = 12 cm Area of hexagon ABCDEF = 2 × Area (trap. AFED) $= 2 \times (\frac{1}{2} \times (FE+BD) \times FL)$ $= (13+23) \times 12$ $= 36 \times 12$ $= 432 \ cm^{2}$

Exercise 18C

Question 1 – The parallel sides of a trapezium measure 14 cm and 18 cm and the distance between them is 9 cm. The area of the trapezium is?

Solution - It is given that length of two parallel sides is 14 cm and 18 cm respectively

Distance between them (h) = 9 cm

Area of trapezium = $\frac{1}{2}$ × Sum of parallel sides × Distance between them

Area of trapezium = $\frac{1}{2} \times (14+18) \times 9 = \frac{32\times9}{2} = 144cm^2$

Question 2 – The lengths of the parallel sides of a trapezium are 19 cm and 13 cm and its area is $128 cm^2$. The distance between the parallel sides is?

Solution - It is given that length of two parallel sides is 19 cm and 13 cm respectively

Distance between them (h) = ?

Area of trapezium = $128 \ cm^2$

Area of trapezium = $\frac{1}{2}$ × Sum of parallel sides × Distance between them $128 = 1 \times (19+13) \times h$ 256 = 32h

h = 256/32 = 8 cm

Question 3 – The parallel sides of a trapezium are in the ratio 3:4 and the perpendicular distance between them is 12 cm. If the area of the trapezium is $630 cm^2$, then its shorter of the parallel sides is?

Solution - Let length of one parallel side be 3x cm

Then, length of other parallel side = 4x cm

Distance between them = 12 cm

Area of trapezium = $630 \ cm^2$

We know that Area of trapezium = $1 \times \text{Sum of parallel sides} \times \text{Distance between them}$

 $630 = \underbrace{1}_{2} \times (3x + 4x) \times 12$

$$=> 1260/12 = 7x$$

=> 105 = 7x

=> x = 105/7 = 15 cm

Thus, lengths of shorter parallel side is 3(15) = 45

Question 4 – The area of a trapezium is $180cm^2$ and its height is 9 cm. If one of the parallel sides is longer than the other by 6 cm, the length of the longer of the parallel sides is?

Solution - Let length of one parallel side be x cm

Then, length of other parallel side = (x+6) cm

Height = 9 cm

Area of trapezium = $180 \ cm^2$

We know that Area of trapezium = $\frac{1}{2}$ × Sum of parallel sides × Distance between them

$$\frac{180 = 1}{2} \quad \times (x + x + 6) \times 9$$

=> 360/9 = 6+2x

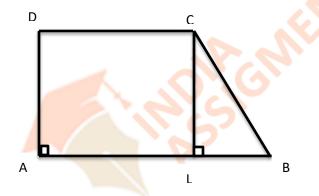
=>40=6+2x

=> 40-6 = 2x

$$=> x = 34/2 = 17 \text{ cm}$$

Thus, lengths of longer parallel side (17+6) = 23 cm

Question 5 – In the given figure, AB//DC and DA \perp AB. If DC = 7 cm, BC = 10 cm, AB = 13 cm and CL \perp AB, the area of trap. ABCD is?



Solution - It is given that AB//DC and DA and CL are perpendicular on AB

DC = 7 cm, BC = 10 cm, AB = 13 cm

Now, CD = AL = 7 cm

Thus, LB = AB - AL = 13 - 7 = 6 cm

In Δ CLB, by Pythagoras theorem,

 $CB^2 = CL^2 + BL^2$

 $=> 10^2 = CL^2 + 6^2$

 $=> 100 = CL^2 + 36$

 $=> 64 = CL^2$

=> CL = 8 cm

Area of trapezium $ABCD = 1/2 \times Sum$ of parallel sides \times Distance between them

- $= \frac{1}{2} \times (CD + AB) \times CL$
- $= \frac{1}{2} \times (7+13) \times 8$
- $= \frac{1}{2} \times 20 \times 8$
- $= 80 \ cm^2$