Introduction

In this chapter we deal with exponents of rational numbers.

Positive integral exponent of a rational number

Let $\frac{a}{b}$ be any rational number and n be a positive integer. Then,

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

Negative integral exponent of a rational number

Let $\frac{a}{b}$ be any rational number and n be a positive integer. Then,

$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$$

Laws of Exponents:

Let $\frac{a}{b}$ be any rational number and m and n be any integers. Then we have:

1)
$$\left(\frac{a}{b}\right)^m * \left(\frac{a}{b}\right)^n = \left(\frac{a}{b}\right)^{m+n}$$

$$2) \left(\frac{a}{b}\right)^m \div \left(\frac{a}{b}\right)^n = \left(\frac{a}{b}\right)^{m-n}$$

3)
$$\left\{ \left(\frac{a}{b}\right)^m \right\}^n = \left(\frac{a}{b}\right)^{mn}$$

4)
$$\left(\frac{a}{b} * \frac{c}{d}\right)^n = \left(\frac{a}{b}\right)^n * \left(\frac{c}{d}\right)^n$$

5)
$$\left(\frac{a}{b} \div \frac{c}{d}\right)^n = \left(\frac{a}{b}\right)^n \div \left(\frac{c}{d}\right)^n$$

6)
$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$$

7)
$$(\frac{a}{b})^0 = 1$$

Examples:

Example 1 - Evaluate

(a) 5^{-3}

Solution - Since
$$(\frac{a}{b})^{-n} = (\frac{b}{a})^n$$

Thus,
$$(\frac{5}{1})^{-3} = (\frac{1}{5})^3 = \frac{1}{5^3} = \frac{1}{5*5*5} = \frac{1}{125}$$

(b)
$$(\frac{1}{3})^{-4}$$

Solution - Since
$$(\frac{a}{b})^{-n} = (\frac{b}{a})^n$$

Thus,
$$(\frac{1}{3})^{-4} = (\frac{3}{1})^4 = 3^4 = 81$$

(c)
$$(\frac{5}{2})^{-3}$$

Solution - Since
$$(\frac{a}{b})^{-n} = (\frac{b}{a})^n$$

Thus,
$$(\frac{5}{2})^{-3} = (\frac{2}{5})^3 = \frac{2^3}{5^3} = \frac{8}{125}$$

(d)
$$(-2)^{-5}$$

Solution - Since
$$(\frac{a}{b})^{-n} = (\frac{b}{a})^n$$

Thus,
$$(\frac{-2}{1})^{-5} = (\frac{1}{-2})^5 = \frac{1}{(-2)^5} = \frac{1}{-32} = \frac{-1}{32}$$
 (as $(-a)^{odd}$ = negative number)

(e)
$$(\frac{-3}{4})^{-4}$$

Solution - Since
$$(\frac{a}{b})^{-n} = (\frac{b}{a})^n$$

Thus,
$$(\frac{-3}{4})^{-4} = (\frac{4}{-3})^4 = \frac{4^4}{(-3)^4} = \frac{256}{81}$$
 (as $(-a)^{even}$ = positive number)

Example 2 - Evaluate

(a)
$$(\frac{2}{3})^3 * (\frac{2}{3})^2$$

Solution - Since
$$(\frac{a}{b})^m * (\frac{a}{b})^n = (\frac{a}{b})^{m+n}$$

Thus,
$$\left(\frac{2}{3}\right)^3 * \left(\frac{2}{3}\right)^2 = \left(\frac{2}{3}\right)^{3+2} = \left(\frac{2}{3}\right)^5 = \frac{2^5}{3^5} = \frac{32}{243}$$

(b)
$$(\frac{4}{7})^5 * (\frac{4}{7})^{-3}$$

Solution - Since
$$(\frac{a}{b})^m * (\frac{a}{b})^n = (\frac{a}{b})^{m+n}$$

Thus,
$$\left(\frac{4}{7}\right)^5 * \left(\frac{4}{7}\right)^{-3} = \left(\frac{4}{7}\right)^{5+(-3)} = \left(\frac{4}{7}\right)^{5-3} = \left(\frac{4}{7}\right)^2 = \frac{4^2}{7^2} = \frac{16}{49}$$

(c)
$$(\frac{3}{2})^{-3} * (\frac{3}{2})^{-2}$$

Solution - Since
$$(\frac{a}{b})^m * (\frac{a}{b})^n = (\frac{a}{b})^{m+n}$$

Thus,
$$(\frac{3}{2})^{-3} * (\frac{3}{2})^{-2} = (\frac{3}{2})^{-3+(-2)} = (\frac{3}{2})^{-3-2} = (\frac{3}{2})^{-5}$$

Since
$$(\frac{a}{b})^{-n} = (\frac{b}{a})^n$$

Thus,
$$(\frac{3}{2})^{-5} = (\frac{2}{3})^5 = \frac{2^5}{3^5} = \frac{32}{243}$$

(d)
$$(\frac{8}{5})^{-3} * (\frac{8}{5})^2$$

Solution - Since
$$(\frac{a}{b})^m * (\frac{a}{b})^n = (\frac{a}{b})^{m+n}$$

Thus,
$$(\frac{8}{5})^{-3} * (\frac{8}{5})^2 = (\frac{8}{5})^{-3+2} = (\frac{8}{5})^{-1}$$

Since
$$(\frac{a}{b})^{-n} = (\frac{b}{a})^n$$

Thus,
$$(\frac{8}{5})^{-1} = (\frac{5}{8})^1 = \frac{5}{8}$$

Example 3 - Evaluate $(\frac{3}{8})^{-2} * (\frac{4}{5})^{-3}$

Solution - Since
$$(\frac{a}{b})^{-n} = (\frac{b}{a})^n$$

Thus,
$$(\frac{3}{8})^{-2} * (\frac{4}{5})^{-3}$$

$$=(\frac{8}{3})^2*(\frac{5}{4})^3$$

$$=\frac{8^2}{3^2}*\frac{5^3}{4^3}$$

$$=\frac{64}{9}*\frac{125}{64}=\frac{125}{9}$$

Example 4 - Evaluate $(\frac{-2}{7})^{-4} * (\frac{-5}{7})^2$

Solution - Since
$$(\frac{a}{b})^{-n} = (\frac{b}{a})^n$$

Thus,
$$(\frac{-2}{7})^{-4} * (\frac{-5}{7})^{2}$$

$$=\left(\frac{7}{-2}\right)^4*\left(\frac{-5}{7}\right)^2$$

$$=\frac{7^4}{(-2)^4}*\frac{(-5)^2}{7^2}$$

$$=\frac{7^2*(-5)^2}{(-2)^4} \quad (\text{since } \frac{7^4}{7^2} = 7^{4-2} = 7^2)$$

$$=\frac{49*25}{16} = \frac{1225}{16}$$
 (since $(-a)^{even}$ = positive number)

Example 6 - Evaluate $\{(\frac{-3}{2})^2\}^{-3}$

Solution - Since
$$\{(\frac{a}{b})^m\}^n = (\frac{a}{b})^{mn}$$

Thus,
$$\left\{ \left(\frac{-3}{2} \right)^2 \right\}^{-3} = \left(\frac{-3}{2} \right)^{-6}$$

Since
$$(\frac{a}{b})^{-n} = (\frac{b}{a})^n$$

Thus,
$$(\frac{-3}{2})^{-6} = (\frac{2}{-3})^{6}$$

$$= \frac{2^6}{(-3)^6} = \frac{64}{729} \text{ (since } (-a)^{even} = \text{positive number)}$$

Example 7 - Simplify

(a)
$$(2^{-1} * 5^{-1})^{-1} \div 4^{-1}$$

Solution - We first solve brackets

$$\left(\frac{1}{2} * \frac{1}{5}\right)^{-1} \div 4^{-1}$$

$$=\left(\frac{1}{10}\right)^{-1} \div 4^{-1}$$
 (using $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^{n}$)

$$=10 \div 4^{-1}$$

$$= 10 \div \frac{1}{4} = 10 *4 = 40$$

(b)
$$(4^{-1} + 8^{-1})^{1} \div (\frac{2}{3})^{-1}$$

Solution - We first solve bracket

$$= (\frac{1}{4} + \frac{1}{8}) \div (\frac{3}{2})^{1} \qquad \text{(using } (\frac{a}{b})^{-n} = (\frac{b}{a})^{n})$$
$$= (\frac{2+1}{8}) \div \frac{3}{2} = \frac{3}{8} * \frac{2}{3} = \frac{6}{24} = \frac{1}{4}$$

Example 8 - Simplify
$$(\frac{1}{2})^{-2} + (\frac{1}{3})^{-2} + (\frac{1}{4})^{-2}$$

Solution
$$(\frac{1}{2})^{-2} + (\frac{1}{3})^{-2} + (\frac{1}{4})^{-2}$$

= $2^2 + 3^2 + 4^2$ (using $(\frac{a}{b})^{-n} = (\frac{b}{a})^n$)
= $4 + 9 + 16$
= 29

Example 9 - By what number should $(\frac{1}{2})^{-1}$ be multiplied so that the product is $(\frac{-5}{4})^{-1}$?

Solution - Let the required number be x

According to given question,

$$(\frac{1}{2})^{-1} \times x = (\frac{-5}{4})^{-1}$$

$$=> 2 \times x = \frac{4}{-5} \qquad \text{(using } (\frac{a}{b})^{-n} = (\frac{b}{a})^n)$$

$$=> x = \frac{4}{-5} \div 2 = \frac{4}{-5} \times \frac{1}{2} = \frac{2}{-5} = \frac{-2}{5}$$

Example 10 - By what number should $(\frac{-3}{2})^{-3}$ be divided so that the quotient is $(\frac{9}{4})^{-2}$?

Solution - Let the required number be x

According to given question,

$$\left(\frac{-3}{2}\right)^{-3} \div \mathbf{x} = \left(\frac{9}{4}\right)^{-2}$$
$$= > \left(\frac{-2}{3}\right)^3 * \frac{1}{x} = \left(\frac{4}{9}\right)^2$$
$$= > \frac{(-2)^3}{(3)^3} * \frac{1}{x} = \frac{(4)^2}{(9)^2}$$

$$=>\frac{-8}{27}=\frac{16}{81}*x$$
 (as $(-a)^{odd}$ = negative number)

$$=> X = \frac{-8}{27} * \frac{81}{16}$$

 $=> x = \frac{-3}{2}$ (as 8 is common divisor of 8 & 16 and 27 is common divisor of 81 & 27)

Exercise 2A

Question 1 - Evaluate

(a)
$$4^{-3}$$

Solution - Since
$$(\frac{a}{b})^{-n} = (\frac{b}{a})^n$$

Thus,
$$4^{-3} = (\frac{1}{4})^3$$

$$=\frac{1}{4^3}=\frac{1}{64}$$

(b)
$$(\frac{1}{2})^{-5}$$

Solution - Since
$$(\frac{a}{b})^{-n} = (\frac{b}{a})^n$$

Thus,
$$(\frac{1}{2})^{-5} = 2^5 = 32$$

(c)
$$(\frac{4}{3})^{-3}$$

Solution - Since
$$(\frac{a}{b})^{-n} = (\frac{b}{a})^n$$

Thus,
$$(\frac{4}{3})^{-3} = (\frac{3}{4})^3$$

$$=\frac{3^3}{4^3}=\frac{27}{64}$$

$$(d) (-3)^{-4}$$

Solution - Since
$$(\frac{a}{b})^{-n} = (\frac{b}{a})^n$$

Thus,
$$(-3)^{-4} = (\frac{-1}{3})^4$$

$$=\frac{(-1)^4}{3^4}=\frac{1}{81}$$

(e)
$$(\frac{-2}{3})^{-5}$$

Solution - Since
$$(\frac{a}{b})^{-n} = (\frac{b}{a})^n$$

Thus,
$$\left(\frac{-2}{3}\right)^{-5} = \left(\frac{-3}{2}\right)^5$$

$$=\frac{(-3)^5}{2^5}=\frac{-243}{32}$$

Question 2 - Evaluate

(a)
$$(\frac{5}{3})^2 * (\frac{5}{3})^2$$

Solution - Since
$$(\frac{a}{b})^m * (\frac{a}{b})^n = (\frac{a}{b})^{m+n}$$

Thus,
$$(\frac{5}{3})^2 * (\frac{5}{3})^2 = (\frac{5}{3})^{2+2}$$

$$= \left(\frac{5}{3}\right)^4 = \frac{5^4}{3^4} = \frac{625}{81}$$

(b)
$$(\frac{5}{6})^6 * (\frac{5}{6})^{-4}$$

Solution - Since
$$(\frac{a}{b})^m * (\frac{a}{b})^n = (\frac{a}{b})^{m+n}$$

Thus,
$$(\frac{5}{6})^6 * (\frac{5}{6})^{-4} = (\frac{5}{6})^{6+(-4)}$$

$$=(\frac{5}{6})^{6-4}=(\frac{5}{6})^2=\frac{\frac{5^2}{6^2}=\frac{25}{36}$$

(c)
$$(\frac{2}{3})^{-3} * (\frac{2}{3})^{-2}$$

Solution - Since
$$(\frac{a}{b})^m * (\frac{a}{b})^n = (\frac{a}{b})^{m+n}$$

Thus,
$$(\frac{2}{3})^{-3} * (\frac{2}{3})^{-2} = (\frac{2}{3})^{-3+(-2)}$$

$$=(\frac{2}{3})^{-3+(-2)}=(\frac{2}{3})^{-3-2}=(\frac{2}{3})^{-5}$$

$$= \left(\frac{3}{2}\right)^5 = \frac{3^5}{2^5} = \frac{243}{32}$$

(d)
$$(\frac{9}{8})^{-3} * (\frac{9}{8})^2$$

Solution - Since
$$(\frac{a}{b})^m * (\frac{a}{b})^n = (\frac{a}{b})^{m+n}$$

Thus,
$$(\frac{9}{8})^{-3} * (\frac{9}{8})^2 = (\frac{9}{8})^{-3+2}$$

$$=(\frac{9}{8})^{-1}=(\frac{8}{9})^1=\frac{8}{9}$$
 (as $(\frac{a}{b})^{-n}=(\frac{b}{a})^n$)

Question 3 - Evaluate

(a)
$$(\frac{5}{9})^{-2} * (\frac{3}{5})^{-3} * (\frac{3}{5})^{0}$$

Solution
$$(\frac{9}{5})^2 * (\frac{5}{3})^3 * (\frac{3}{5})^0$$
 (as $(\frac{a}{b})^{-n} = (\frac{b}{a})^n$)

$$= \frac{9^2}{5^2} * \frac{5^3}{3^3} * 1 \qquad (as(\frac{a}{b})^0 = 1)$$

$$=\frac{81}{25}*\frac{125}{27}$$

= 3 * 5 = 15 (as 27 is common divisor of 81 & 27 and 25 is common divisor of 125 & 25)

(b)
$$(\frac{-3}{5})^{-4} * (\frac{-2}{5})^2$$

Solution
$$(\frac{-5}{3})^4 * (\frac{-2}{5})^2$$
 (as $(\frac{a}{b})^{-n} = (\frac{b}{a})^n$)

$$=\frac{(-5)^4}{3^4}*\frac{(-2)^2}{5^2}=\frac{(5)^4}{3^4}*\frac{(2)^2}{5^2}$$

$$=\frac{(5)^{4-2}*4}{81}=\frac{(5)^{2}*4}{81}=\frac{25*4}{81}=\frac{100}{81} \quad (as(\frac{a}{b})^{m}\div(\frac{a}{b})^{n}=(\frac{a}{b})^{m-n})$$

(c)
$$\left(\frac{-2}{3}\right)^{-3} * \left(\frac{-2}{3}\right)^{-2}$$

Solution - Since
$$(\frac{a}{b})^m * (\frac{a}{b})^n = (\frac{a}{b})^{m+n}$$

Thus,
$$\left(\frac{-2}{3}\right)^{-3} * \left(\frac{-2}{3}\right)^{-2} = \left(\frac{-2}{3}\right)^{-3+(-2)}$$

$$=(\frac{-2}{3})^{-3-2}=(\frac{-2}{3})^{-5}=(\frac{-3}{2})^{5}$$

$$=\frac{(-3)^5}{2^5}=\frac{-243}{32}$$

Question 4 - Evaluate

(a)
$$\{(\frac{-2}{3})^2\}^{-2}$$

Solution - Since
$$\{(\frac{a}{b})^m\}^n = (\frac{a}{b})^{mn}$$

Thus,
$$\{(\frac{-2}{3})^2\}^{-2} = (\frac{-2}{3})^{-4}$$

$$= \left(\frac{-3}{2}\right)^4 = \frac{3^4}{2^4} = \frac{81}{16}$$

(b)
$$\left[\left\{\left(\frac{-1}{3}\right)^2\right\}^{-2}\right]^{-1}$$

Solution - Since $\{(\frac{a}{b})^m\}^n = (\frac{a}{b})^{mn}$

Thus,
$$\left[\left\{\left(\frac{-1}{3}\right)^2\right\}^{-2}\right]^{-1} = \left\{\left(\frac{-1}{3}\right)^2\right\}^2$$

$$=(\frac{-1}{3})^4=\frac{1}{3^4}=\frac{1}{81}$$
 (as $(-1)^4=1$)

(c)
$$\{(\frac{3}{2})^{-2}\}^2$$

Solution - Since $\{(\frac{a}{b})^m\}^n=(\frac{a}{b})^{mn}$

Thus,
$$\{(\frac{3}{2})^{-2}\}^2 = (\frac{3}{2})^{-4}$$

$$=\left(\frac{2}{3}\right)^4=\frac{2^4}{3^4}=\frac{16}{81}$$

Question 5 - Evaluate $\{(\frac{1}{3})^{-3} - (\frac{1}{2})^{-3}\} \div (\frac{1}{4})^{-3}$

Solution - We first solve curly brackets

$$= \left\{ \left(\frac{1}{3}\right)^{-3} - \left(\frac{1}{2}\right)^{-3} \right\} \div \left(\frac{1}{4}\right)^{-3}$$

$$= \{3^3 - 2^3\} \div 4^3$$

$$= \{27 - 8\} \div 64$$

$$= 19 \div 64$$

$$=\frac{19}{64}$$

Question 6 - Evaluate $\{(\frac{4}{3})^{-1} - (\frac{1}{4})^{-1}\}^{-1}$

Solution
$$\{(\frac{3}{4})^1 - (\frac{4}{1})^1\}^{-1}$$

$$= \{ \frac{3}{4} - \frac{4}{1} \}^{-1}$$

$$= \left\{ \frac{3-16}{4} \right\}^{-1} = \left\{ \frac{-13}{4} \right\}^{-1} = \frac{-4}{13}$$

Question 7 - Evaluate $[(5^{-1} * 3^{-1})^{-1} \div 6^{-1}]$

Solution
$$[(\frac{1}{5} * \frac{1}{3})^{-1} \div \frac{1}{6}]$$

$$= \left[\left(\frac{1}{15} \right)^{-1} \div \frac{1}{6} \right]$$

$$= [15 \div \frac{1}{6}]$$

$$= [15 * 6]$$

Question 8 - Find the value of

(a)
$$(2^0 + 3^{-1}) * 3^2$$

Solution
$$(1 + \frac{1}{3}) * 9$$

$$=(\frac{3+1}{3})*9$$

$$=\frac{4}{3}*9=12$$

(b)
$$(2^{-1} * 3^{-1}) \div 2^{-3}$$

Solution
$$(\frac{1}{2} * \frac{1}{3}) \div 2^{-3}$$

$$=\frac{1}{6} \div \frac{1}{2^3} = \frac{1}{6} * 2^3$$

$$=\frac{8}{6}=\frac{4}{3}$$

(c)
$$(\frac{1}{2})^{-2} + (\frac{1}{3})^{-2} + (\frac{1}{4})^{-2}$$

Solution
$$2^2 + 3^2 + 4^2$$

$$=4+9+16$$

Question 9 - Find the value of x for which $(\frac{5}{3})^{-4} * (\frac{5}{3})^{-5} = (\frac{5}{3})^{3x}$

Solution - Since $(\frac{a}{b})^m * (\frac{a}{b})^n = (\frac{a}{b})^{m+n}$

Thus,
$$(\frac{5}{3})^{-4} * (\frac{5}{3})^{-5} = (\frac{5}{3})^{3x}$$

$$=> (\frac{5}{3})^{-4-5} = (\frac{5}{3})^{3x}$$

$$=> (\frac{5}{3})^{-9} = (\frac{5}{3})^{3x}$$

Now as base is same thus we can equate powers

$$=> -9 = 3x$$

$$=> x = \frac{-9}{3} = -3$$

Question 10 - Find the value of x for which $(\frac{4}{9})^4 * (\frac{4}{9})^{-7} = (\frac{4}{9})^{2x-1}$

Solution - Since $(\frac{a}{b})^m * (\frac{a}{b})^n = (\frac{a}{b})^{m+n}$

Thus,
$$(\frac{4}{9})^4 * (\frac{4}{9})^{-7} = (\frac{4}{9})^{2x-1}$$

$$=> \left(\frac{4}{9}\right)^{4-7} = \left(\frac{4}{9}\right)^{2x-1}$$

$$=> \left(\frac{4}{9}\right)^{-3} = \left(\frac{4}{9}\right)^{2x-1}$$

Now as base is same thus we can equate powers

$$=> -3 = 2x - 1$$

$$=> 2x = -3 + 1$$

$$=> 2x = -2$$

$$=> x = \frac{-2}{2} = -1$$

Question 11 - By what number should $(-6)^{-1}$ be multiplied so that the product becomes 9^{-1} ?

Solution - Let the required number be x

Then according to given question,

$$(-6)^{-1} * x = 9^{-1}$$

$$=>\frac{-1}{6}*x=\frac{1}{9}$$

$$=> -x = \frac{1}{9}*6$$

$$=> x = \frac{-2}{3}$$

Question 12 - By what number should $(\frac{-2}{3})^{-3}$ be divided so that the quotient may be $(\frac{4}{27})^{-2}$?

Solution - Let the required number be x

Then according to given question,

$$\left(\frac{-2}{3}\right)^{-3} \div x = \left(\frac{4}{27}\right)^{-2}$$

$$=> (\frac{-3}{2})^3 \div x = (\frac{27}{4})^2$$

$$=>\frac{(-3)^3}{2^3}*\frac{1}{x}=\frac{27^2}{4^2}$$

$$=>\frac{-27}{8}*\frac{1}{x}=\frac{729}{16}$$

$$=>\frac{-27}{8}*\frac{16}{729}=X$$

 $=>\frac{-2}{27}=x$ (as 8 is common divisor of 16 & 8 and 27 is common divisor of 27 & 729)

Question 13 - If $5^{2x+1} \div 25 = 125$, find the value of x.

Solution - Since $25 = 5^2$ and $125 = 5^3$

Thus, we can write given equation as follows

$$5^{2x+1} \div 25 = 125$$

$$=>5^{2x+1} \div 5^2 = 5^3$$

$$=>\frac{5^{2x+1}}{5^2}=5^3 \quad ((\frac{a}{b})^m \div (\frac{a}{b})^n = (\frac{a}{b})^{m-n})$$

$$=> (5)^{2x+1-2} = 5^3$$

$$=> (5)^{2x-1} = 5^3$$

Now as base is same so we can equate the powers

$$=> 2x-1 = 3$$

$$=> 2x = 3+1$$

$$=> 2x = 4$$

$$=> x = 2$$

Numbers in standard form: A number $(m \times 10^n)$ is said to be in standard form if m is a decimal number such that $1 \le m < 10$ and n is either a positive or a negative integer.

Examples:

Example 1 - Express each of the following numbers in standard form:

(a) 6872

Solution - For standard form, we write it in the form $(m \times 10^n)$

$$6872 = 6.872 \times 1000 = 6.872 \times 10^3$$

(b) 140000

Solution - For standard form, we write it in the form $(m \times 10^n)$

$$140000 = 14 \times 10000 = 14 \times 10^4 = 1.4 \times 10 \times 10^4 = 1.4 \times 10^5$$

(c) 15360000000

Solution - For standard form, we write it in the form $(m \times 10^n)$

$$15360000000 = 1536 \times 10000000 = 1536 \times 10^7 = 1.536 \times 10^3 \times 10^7$$

$$= 1.536 \times 10^{10}$$

Example 2 - The diameter of the sun is (1.4×10^9) m and the diameter of the earth is (1.2756×10^7) m. Show that the diameter of the sun is nearly 100 times the diameter of the earth.

Solution - We are given that diameter of sun = (1.4×10^9) m

Diameter of earth = 1.2756×10^7 m

To prove: diameter of earth = $100 \times$ (diameter of sun)

Proof: We find the ratio of diameters as follows:

$$=> \frac{\text{diameter of sun}}{\text{diameter of earth}} = \frac{1.4 \times 10^9}{1.2756 \times 10^7}$$

We first solve the powers of 10

$$\frac{\text{diameter of sun}}{\text{diameter of earth}} = \frac{1.4 \times 10^{9-7}}{1.2756} = \frac{1.4 \times 10^2}{1.2756}$$

We now remove decimal from the figures and convert in powers of 10

$$\frac{\text{diameter of sun}}{\text{diameter of earth}} = \frac{14 \times 10^2 \times 10^4}{12756 \times 10} = \frac{14 \times 10^{2+4-1}}{12756} = \frac{14 \times 10^5}{12756} = 100 \text{ (nearly)}$$

 \Rightarrow Diameter of earth = $100 \times$ (diameter of sun)

Hence proved

Example 3 - In a stack there are 4 books each of thickness 24 mm and 6 paper sheets each of thickness 0.015 mm. What is the total thickness of the stack in standard form?

Solution - Thickness of 1 book = 24 mm

Thickness of 4 books = $24 \times 4 = 96 \text{ mm}$

Thickness of 1 paper sheet = 0.015 mm

Thickness of 6 paper sheets = $0.015 \times 6 = 0.09$ mm

Thus total thickness of stack = (96+0.09) mm = 96.09 mm

In standard form,

We first remove decimal from figure

96.09 mm =
$$\frac{9609}{100}$$
 mm = $\frac{9.609 \times 1000}{100}$ = 9.609 × 10 mm

Example 4 - The distance between sun and earth is (1.496×10^{11}) m and the distance between earth and moon is (3.84×10^8) m. During solar eclipse moon comes in between earth and sun. At that time what is the distance between moon and sun?

Solution - Given that distance between sun and earth = (1.496×10^{11}) m

Distance between earth and moon = (3.84×10^8) m

Distance between moon and sun =?

$$(3.84 \times 10^8)$$
m

So we can see from the figure that, distance between moon and sun is obtained by subtracting distance between sun and earth & distance between moon and earth.

Thus, Distance between moon and sun = (1.496×10^{11}) - (3.84×10^{8})

$$=\big(\frac{1496\times10^{11}}{1000}\big)-\big(\frac{384\times10^8}{100}\big)$$

$$=(1496\times10^{11-3})-(384\times10^{8-2})$$

$$=(1496\times10^8)-(384\times10^6)$$

We can take 10^6 as common value

$$=10^6 ((1496 \times 10^2) - 384)$$

$$= 10^6 (149600 - 384)$$

$$= 149216 \times 10^6$$

In standard form,

$$= 1.49216 \times 10^5 \times 10^6$$

$$= 1.49216 \times 10^{11} \text{ m}$$

Example 5 - Write each of the following numbers in usual form:

(a)
$$4.61 \times 10^5$$

Solution -
$$4.61 \times 10^5 = \frac{461 \times 10^5}{10^2}$$

$$=461\times10^{5-2}=461\times10^3$$

$$=461000$$

(b)
$$2.514 \times 10^7$$

Solution -
$$2.514 \times 10^7 = \frac{2514 \times 10^7}{10^3}$$

$$=2514 \times 10^{7-3} = 2514 \times 10^4$$

(c)
$$2.0001 \times 10^8$$

Solution -
$$2.0001 \times 10^8 = \frac{20001 \times 10^8}{10^4}$$

$$=20001 \times 10^{8-4} = 20001 \times 10^4$$

=200010000

Example 6 - Express each of the following numbers in standard form:

(a) 0.00002

Solution - Firstly we remove decimal,

$$0.00002 = \frac{2}{10^5} = 2 \times 10^{-5}$$

(b) 0.000000061

Solution - Firstly we remove decimal,

$$0.000000061 = \frac{61}{10^9} = \frac{6.1 \times 10}{10^9} = 6.1 \times 10^{(1-9)}$$

$$=6.1 \times 10^{-8}$$

(c) 0.0000000837

Solution - Firstly we remove decimal,

$$0.00000000837 = \frac{837}{10^{11}} = \frac{8.37 \times 10^2}{10^{11}}$$

$$= 8.37 \times 10^{(2-11)} = 8.37 \times 10^{-9}$$

Example 7 -the size of a red blood cell is 0.000007 m and that of a plant cell is 0.00001275 m. Show that a red blood cell is half of plant cell in size.

Solution - Given that size of red blood cell = 0.000007 m = $\frac{7}{10^6}$ = 7 × 10⁻⁶ m

Size of plant cell =
$$0.00001275 \text{ m} = \frac{1275}{10^8} = 1275 \times 10^{-8} = 1.275 \times 10^3 \times 10^{-8}$$

$$= 1.275 \times 10^{3-8} = 1.275 \times 10^{-5} \text{m}$$

Now to prove: size of red blood cell = $\frac{1}{2}$ (size of plant cell)

We find the ratio between the two:

$$\frac{\text{size of red blood cell}}{\text{size of plant cell}} = \frac{7 \times 10^{-6}}{1.275 \times 10^{-5}} = \frac{7 \times 10^{-6+5}}{1.275} = \frac{7 \times 10^{-1}}{1.275}$$

$$=\frac{7\times10^{-1}\times10^{3}}{1275}=\frac{7\times10^{-1+3}}{1275}=\frac{7\times10^{2}}{1275}=\frac{700}{1275}=0.5 \text{ (approx.)}=\frac{1}{2} \text{ (approx.)}$$

Thus size of red blood cell = $\frac{1}{2}$ (size of plant cell)

Example 8 - Express the following numbers in usual form:

(a)
$$2 \times 10^{-5}$$

Solution
$$2 \times 10^{-5} = \frac{2}{10^5} = \frac{2}{100000}$$

$$= 0.00002$$

(b)
$$6.32 \times 10^{-4}$$

Solution
$$6.32 \times 10^{-4} = \frac{6.32}{10^4}$$

$$=\frac{6.32}{10000}=0.000632$$

(c)
$$1.596 \times 10^{-6}$$

Solution
$$1.596 \times 10^{-6} = \frac{1.596}{10^6}$$

$$=\frac{1.596}{1000000}=0.0000001596$$

Exercise 2B

Question 1 - Write each of the following numbers in standard form:

(a) 57.36

Solution:
$$57.36 = \frac{5736}{100} = \frac{5736}{10^2} = \frac{5.736 \times 10^3}{10^2}$$

$$=5.736\times10^{3-2}=5.736\times10^{1}$$

(b) 3500000

Solution:
$$3500000 = 35 \times 10^5 = 3.5 \times 10 \times 10^5$$

$$= 3.5 \times 10^6$$

(c) 273000

Solution: $273000 = 273 \times 10^3 = 2.73 \times 100 \times 10^3$

$$= 2.73 \times 10^5$$

(d) 168000000

Solution: $168000000 = 168 \times 10^6$

$$= 1.68 \times 100 \times 10^6 = 1.68 \times 10^8$$

(e) 4630000000000

Solution: $46300000000000 = 463 \times 10^{10}$

$$=4.63 \times 100 \times 10^{10} = 4.63 \times 10^{12}$$

(f) 345×10^5

Solution: $345 \times 10^5 = 3.45 \times 100 \times 10^5$

$$= 3.45 \times 10^7$$

Question 2 - Write each of the following numbers in usual form:

(a) 3.74×10^5

Solution:
$$\frac{374 \times 10^5}{100} = 374 \times 10^3 = 374000$$

(b) 6.912×10^8

Solution:
$$\frac{6912 \times 10^8}{1000} = 6912 \times 10^5$$

$$=691200000$$

(c) 4.1253×10^7

Solution:
$$\frac{41253\times10^7}{10^4} = 41253\times10^3$$

$$=41253000$$

(d)
$$2.5 \times 10^4$$

Solution:
$$\frac{25 \times 10^4}{10} = 25 \times 10^3$$

$$= 25000$$

(e)
$$5.17 \times 10^6$$

Solution:
$$\frac{517 \times 10^6}{100} = 517 \times 10^4$$

$$=5170000$$

(f)
$$1.679 \times 10^9$$

Solution:
$$\frac{1679\times10^9}{10^3} = 1679\times10^6$$

$$= 1679000000$$

Question 3 (a) -The height of Mount Everest is 8848 m. Write it in standard form

Solution: In standard form,

Height of Mount Everest = $8848 = 8.848 \times 10^3$ m

(b) The speed of light is 300000000 m /sec .Express it in standard form.

Solution: In standard form,

Speed of light = $300000000 = 3 \times 10^8 \text{ m/sec}$

(c) The distance from the earth to the sun is 149600000000 m .Write it in standard form.

Solution: In standard form,

Distance from earth to $sun = 149600000000 = 1496 \times 10^8$

$$= 1.496 \times 10^{3} \times 10^{8} = 1.496 \times 10^{11} \text{ m}$$

Question 4 - Mass of earth is (5.97×10^{24}) kg and mass of moon is (7.35×10^{22}) kg. What is the total mass of the two?

Solution: Total mass = Mass of earth + Mass of moon

$$= (5.97 \times 10^{24}) + (7.35 \times 10^{22})$$
$$= 10^{22}((5.97 \times 10^{2}) + 7.35)$$
$$= 10^{22}((\frac{597 \times 100}{100}) + 7.35)$$

$$=10^{22}(597+7.35)=10^{22}(604.35)$$

$$= \frac{60435 \times 10^{22}}{100} = 60435 \times 10^{20} = 60435 \times 10^{4} \times 10^{22} = 6.0435 \times 10^{26} \text{ kg}$$

Question 5 - Write each of the following numbers in standard form:

(a) 0.0006

Solution:
$$\frac{6}{10000} = \frac{6}{10^4} = 6 \times 10^{-4}$$

(b) 0.00000083

Solution:
$$\frac{83}{100000000} = \frac{83}{10^8} = 83 \times 10^{-8} = 8.3 \times 10 \times 10^{-8} = 8.3 \times 10^{-7}$$

(c) 0.000000534

Solution:
$$\frac{534}{10000000000} = \frac{534}{10^{10}} = 534 \times 10^{-10} = 5.34 \times 100 \times 10^{-10} = 5.34 \times 10^{-8}$$

(d) 0.0027

Solution:
$$\frac{27}{10000} = \frac{27}{10^4} = 27 \times 10^{-4} = 2.7 \times 10 \times 10^{-4} = 2.7 \times 10^{-3}$$

(e) 0.00000165

Solution:
$$\frac{165}{100000000} = \frac{165}{10^8} = 165 \times 10^{-8} = 1.65 \times 100 \times 10^{-8} = 1.65 \times 10^{-6}$$

(f) 0.00000000689

Solution:
$$\frac{689}{100000000000} = \frac{689}{10^{11}} = 689 \times 10^{-11} = 6.89 \times 100 \times 10^{-11} = 6.89 \times 10^{-9}$$

Question 6 (a) - 1 micron = $\frac{1}{1000000}$ m. Express it in standard form.

Solution:
$$\frac{1}{1000000} = \frac{1}{10^6} = 1 \times 10^{-6} = 10^{-6} \text{m}$$

(b) Size of a bacteria = 0.0000004 m. Express it in standard form.

Solution:
$$0.0000004 = \frac{4}{10000000} = 4 \times 10^{-7} \text{m}$$

(c) Thickness of a paper = 0.03 mm. Express it in standard form.

Solution:
$$0.03 = \frac{3}{100} = 3 \times 10^{-2} \text{ mm}$$

Question 7 - Write each of the following numbers in usual form:

(a)
$$2.06 \times 10^{-5}$$

Solution:
$$\frac{206 \times 10^{-5}}{10^2} = 206 \times 10^{-5-2} = 206 \times 10^{-7} = \frac{206}{10^7} = \frac{206}{10000000} = 0.0000206$$

(b)
$$5 \times 10^{-7}$$

Solution:
$$\frac{5}{10^7} = \frac{5}{10000000} = 0.0000005$$

(c)
$$6.82 \times 10^{-6}$$

Solution:
$$\frac{682 \times 10^{-6}}{100} = \frac{682}{10^{2+6}} = \frac{682}{10^8} = \frac{682}{100000000} = 0.00000682$$

(d)
$$5.673 \times 10^{-4}$$

Solution:
$$\frac{5673 \times 10^{-4}}{10^3} = \frac{5673}{10^7} = \frac{5673}{10000000} = 0.0005673$$

(e)
$$1.8 \times 10^{-2}$$

Solution:
$$\frac{18 \times 10^{-2}}{10} = \frac{18}{10^3} = \frac{18}{1000} = 0.018$$

(f) 4.
$$129 \times 10^{-3}$$

Solution:
$$\frac{4129 \times 10^{-3}}{10^3} = \frac{4129}{10^6} = \frac{4129}{1000000} = 0.004129$$

Exercise 2C

Question 1 - The value of $(\frac{2}{5})^{-3}$ is ...

Solution:
$$\left(\frac{2}{5}\right)^{-3} = \left(\frac{5}{2}\right)^3 = \frac{5^3}{2^3} = \frac{125}{8}$$

Question 2 - The value of $(-3)^{-4}$ is

Solution:
$$\left(-3\right)^{-4} = \left(\frac{-1}{3}\right)^4 = \frac{1}{3^4} = \frac{1}{81}$$

Question 3 - The value of $(-2)^{-5}$ is

Solution:
$$\left(-2\right)^{-5} = \left(\frac{-1}{2}\right)^5 = \frac{-1}{2^5} = \frac{-1}{32}$$

Question 4 -
$$(2^{-5} \div 2^{-2}) = ?$$

Solution:
$$(2^{-5} \div 2^{-2}) = (\frac{1}{2^5} \div \frac{1}{2^2})$$

$$=\frac{1\times2^2}{2^5}=\frac{1}{2^3}=\frac{1}{8}$$

Question 5 - The value of $(3^{-1} + 4^{-1})^{-1} \div 5^{-1}$

Solution:
$$\left(\frac{1}{3} + \frac{1}{4}\right)^{-1} \div \frac{1}{5}$$

$$= \left(\frac{4+3}{12}\right)^{-1} \div \frac{1}{5}$$

$$= \left(\frac{7}{12}\right)^{-1} \div \frac{1}{5}$$

$$=\frac{12}{7} \times 5$$

$$=\frac{60}{7}$$

Question 6 - $(\frac{1}{2})^{-2} + (\frac{1}{3})^{-2} + (\frac{1}{4})^{-2}$

Solution:
$$2^2 + 3^2 + 4^2$$

$$=4+9+16$$

Question 7 - $\{(\frac{1}{3})^{-3} - (\frac{1}{2})^{-3}\} \div (\frac{1}{4})^{-3}$

Solution:
$$\{3^3 - 2^3\} \div 4^3$$

$$= \{27-8\} \div 64$$

$$=\frac{19}{64}$$

Question 8 - $\left[\left\{\left(\frac{-1}{2}\right)^2\right\}^{-2}\right]^{-1} = ?$

Solution:
$$[\{\frac{1}{2^2}\}^{-2}]^{-1}$$

$$= \left[\left\{ \frac{1}{4} \right\}^{-2} \right]^{-1} = \left[\left\{ 4^2 \right\} \right]^{-1}$$

$$=[16]^{-1}=\frac{1}{16}$$

Question 9 - The value of x for which $(\frac{7}{12})^{-4} \times (\frac{7}{12})^{3x} = (\frac{7}{12})^5$ is

Solution:
$$(\frac{7}{12})^{-4+3x} = (\frac{7}{12})^5$$

Since base is same, we can equate the powers

$$=> -4 + 3x = 5$$

$$=> 3x = 5+4$$

$$=> 3x = 9$$

$$=> x = 3$$

Question 10 - If $(2^{3x-1} + 10) \div 7 = 6$, then x is equal to

Solution:
$$(2^{3x-1} + 10) \div 7 = 6$$

$$=>\frac{2^{3x-1}+10}{7}=6$$

$$=> 2^{3x-1} + 10 = 42$$

$$=>2^{3x-1}=42-10=32$$

$$=>2^{3x-1}=32$$

$$=>2^{3x-1}=2^5$$

Since base is same, we can equate powers

$$=> 3x - 1 = 5$$

$$=> 3x = 5+1$$

$$=> 3x = 6$$

$$=> x = 2$$

Question 11 - $(\frac{2}{3})^0$

Solution: Since $(\frac{a}{b})^0 = 1$

Thus,
$$(\frac{2}{3})^0 = 1$$

Question 12 -
$$(\frac{-5}{3})^{-1} = ?$$

Solution:
$$(\frac{-5}{3})^{-1} = (\frac{-3}{5})^1 = \frac{-3}{5}$$

Question 13 -
$$(\frac{-1}{2})^3 = ?$$

Solution:
$$(\frac{-1}{2})^3 = -\frac{1}{2^3} = \frac{-1}{8}$$

Question 14 -
$$(\frac{-3}{4})^2 = ?$$

Solution:
$$\frac{(-3)^2}{4^2} = \frac{9}{16}$$

Question 15 - 3670000 in standard form is

Solution:
$$3670000 = 367 \times 10^4 = 3.67 \times 100 \times 10^4$$

$$= 3.67 \times 10^6$$

Question 16 - 0.0000463 in standard forms is

Solution:
$$0.0000463 = \frac{463}{10000000} = \frac{463}{10^7}$$

$$=463 \times 10^{-7} = 4.63 \times 100 \times 10^{-7}$$

$$=4.63 \times 10^{-5}$$

Question 17 - 0.000367 \times 10⁴ in usual form is ...

Solution:
$$0.000367 \times 10^4 = \frac{367 \times 10^4}{1000000} = \frac{367 \times 10^4}{10^6}$$

$$=\frac{367}{10^2}=\frac{367}{100}=3.67$$